A.2 POPIS NADOBECNÍCH SYSTÉMŮ VODOVODŮ A KANALIZACÍ V KRAJI

AKTUALIZACE PRVKUK HL.M. PRAHY

STUPEŇ PROJEKTOVÉ DOKUMENTACE: Program rozvoje vodovodů a kanalizací území kraje
DATUM: 12.2016

PŘÍLOHA č. 2 k usnesení Zastupitelstva HMP č. 30/133 ze dne 2. 11. 2017
A.2 POPIS NADOBEČNÍCH SYSTÉMŮ VODOVODŮ A KANALIZACÍ V KRAJI

<table>
<thead>
<tr>
<th>ÚPLNÝ NÁZEV AKCE (PROJEKTU):</th>
<th>DATUM:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aktualizace PRVKUK hl.m. Prahy</td>
<td>12.2016</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PODNÁZEV:</th>
<th>STUPEŇ PROJEKTOVÉ DOKUMENTACE:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Program rozvoje vodovodů a kanalizací území krají</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OBJEDNATEL:</th>
<th>ADRESA:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pražská vodohospodářská společnost a.s.</td>
<td>Žatecká 2/110, 110 00 Praha 1, Staré Město</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ZHOTOVITEL:</th>
<th>ADRESA:</th>
<th>GENERÁLNÍ ŘEDITEL:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sweco Hydroprojekt a.s.</td>
<td>Táborská 31, 140 16 Praha 4</td>
<td>Ing. Milan Moravec, Ph.D.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HLAVNÍ INŽENÝR PROJEKTU:</th>
<th>ŘEDITEL DIVIZIE:</th>
<th>TECHNICKÁ KONTROLA:</th>
</tr>
</thead>
</table>

ZODPOVĚDNÍ PROJEKTANTI PROFESÍ:

vodohospodářská část

Na projektu dále spolupracovali

© Sweco Hydroprojekt a.s.

Tato dokumentace včetně všech příloh (s výjimkou dat poskytnutých objednatelem) je duševním vlastnictvím akciové společnosti Sweco Hydroprojekt a.s. Objednatelem této dokumentace je oprávněn ji využít k účelům vyplývajícím z uzavřené smlouvy bez jakéhokoliv omezení. Jiné osoby (jak fyzické, tak právnické) nejsou bez předchozího výslovného souhlasu objednatele oprávněny tuto dokumentaci ani její části jakkoli využívat, kopírovat (ani jiným způsobem rozmnogožovat) nebo zpřístupnit dalším osobám.

Poznámka: Podpisy zpracovatelů jsou připojeny pouze k výtisku číslo 01 nebo originálu příloh (matrici).
OBSAH / SEZNAM PŘÍLOH

<table>
<thead>
<tr>
<th>Strana</th>
<th>OBSAH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Úvod. ... 6</td>
</tr>
<tr>
<td>2</td>
<td>Charakteristika řešeného území .. 8</td>
</tr>
<tr>
<td>2.1</td>
<td>Územní členění kraje – hl. m. Prahy .. 8</td>
</tr>
<tr>
<td>1.1</td>
<td>Demografické údaje .. 8</td>
</tr>
<tr>
<td>1.1.1</td>
<td>Územní plán hlavního města Prahy .. 8</td>
</tr>
<tr>
<td>1.1.2</td>
<td>Demografický vývoj v Praze .. 9</td>
</tr>
<tr>
<td>1.1.3</td>
<td>Obyvatelé s časově omezeným pobytem (ČOP) ... 10</td>
</tr>
<tr>
<td>1.2</td>
<td>Hospodářský rozvoj území .. 10</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Obchod a služby .. 11</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Administrativa .. 11</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Výroba a sklady .. 12</td>
</tr>
<tr>
<td>1.3</td>
<td>Geomorfološké území ... 12</td>
</tr>
<tr>
<td>1.4</td>
<td>Klimatické podmínky .. 12</td>
</tr>
<tr>
<td>1.5</td>
<td>Hydrogeologické podmínky a popis hydrogeologických rajónů na území kraje ... 13</td>
</tr>
<tr>
<td>1.5.1</td>
<td>Hydrogeologické podmínky .. 13</td>
</tr>
<tr>
<td>1.5.2</td>
<td>Hydrogeologické rajóny .. 13</td>
</tr>
<tr>
<td>1.6</td>
<td>Popis ekologicky významních území, chráněná krajiná území 15</td>
</tr>
<tr>
<td>1.7</td>
<td>Přehled významných vodotečí a vodních ploch .. 16</td>
</tr>
<tr>
<td>3</td>
<td>Podklady .. 18</td>
</tr>
<tr>
<td>4</td>
<td>Vodovody – zásobení pitnou vodou ... 22</td>
</tr>
<tr>
<td>4.1</td>
<td>Výpočet a bilance potřeby vody .. 22</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Počet obyvatel zásobených pitnou vodou ... 22</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Výpočet potřeby vody .. 22</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Bilance potřeby vody .. 24</td>
</tr>
<tr>
<td>4.2</td>
<td>Vodovody – souhrn současného stavu .. 44</td>
</tr>
<tr>
<td>4.3</td>
<td>Zdroje pitné vody .. 45</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Souhnné informace .. 45</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Popis zdrojů pitné vody .. 46</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Zdroj Jizera, podzemní zdroje ... 46</td>
</tr>
<tr>
<td>4.3.3.1</td>
<td>Popis zdroje ... 46</td>
</tr>
<tr>
<td>3.1.1.2</td>
<td>Zdroj Vltava .. 50</td>
</tr>
<tr>
<td>3.1.1.2</td>
<td>Zdroj Želivka .. 54</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Hodnocení zdrojů z hlediska jakosti surové a upravené vody 56</td>
</tr>
<tr>
<td>3.1.2.1</td>
<td>Surová voda .. 56</td>
</tr>
<tr>
<td>3.1.2.2</td>
<td>Upravená voda .. 58</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Přehled navržených opatření na zdrojích .. 59</td>
</tr>
<tr>
<td>3.2</td>
<td>Pražský vodárenský systém ... 60</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Doprava vody ... 60</td>
</tr>
<tr>
<td>3.2.1.1</td>
<td>Souhnné informace .. 60</td>
</tr>
<tr>
<td>3.2.1.2</td>
<td>Technické informace k distribučnímu systému ... 61</td>
</tr>
<tr>
<td>3.2.1.3</td>
<td>Přehled navržených opatření na distribučním systému 62</td>
</tr>
</tbody>
</table>
AKTUALIZACE k roku 2007 - psáno modře
AKTUALIZACE k roku 2010 - psáno červeně
AKTUALIZACE k roku 2016 – psáno zeleně

3.2.2 Zásobní pásma a rozvodná síť v zásobních pásech ... 64
3.2.2.1 Členění pražského vodovodu na zásobní pásma .. 64
3.2.2.2 Rozvodná síť ... 64
3.2.2.3 Posouzení zásobních páseň ... 65
3.2.2.4 Úpravy hranic zásobních pásem, nová zásobní pásma a dostavba vodovodního systému .. 65
3.2.2.5 Rekonstrukce vodovodních síť... 66
3.2.3 Vodojemy, čerpací stanice, kolektory... 67
3.2.3.1 Vodojemy ... 67
3.2.3.2 Čerpací stanice ... 68
3.2.3.3 Kolektory ... 69
3.3 Průmyslový vodovod .. 70
3.4 Předpoklady zásobení hl. m. Prahy pitnou vodou do roku 2015 a DÁle.. 71
3.5 Používání zásobování pitnou vodou .. 71
3.5.1 Koncepce systému používání zásobování pitnou vodou pro krizové plány 72
3.5.1.1 Zásady zabezpečení pitné vody v krizových situacích 72
3.5.2 Zdroje pro používání zásobování pitnou vodou .. 74
3.5.3 Používání zásobování užitkovou vodou .. 75
3.6 Vymezení realizačních preferencí ... 76

4 Odvedení a Čištění odpadních vod ... 78
4.1 Produkce odpadních vod ... 78
4.1.1 Výpočet produkce odpadních vod ... 78
4.1.1.1 Výpočet produkce odpadních vod od obyvatelstva .. 78
4.1.1.2 Výpočet produkce odpadních vod a znečištění z průmyslu, zemědělství a vybaveností ... 79
4.2 Kanalizace – souhrn současného stavu .. 79
4.2.1 Kanalizační síť ... 79
4.2.2 Ústřední čistírna odpadních vod .. 94
4.2.3 Pobočné čistírny odpadních vod ... 95
4.2.4 Zdroje pro používání zásobování pitnou vodou .. 96
4.2.4.1 Kanalizační síť ... 96
4.2.4.2 Ústřední čistírna odpadních vod ... 97
4.2.4.3 Pobočné čistírny odpadních vod ... 98
4.3 Předpoklady vývoje odvedení a čištění odpadních vod v hl. m. Praze do roku 2015 ... 98
4.3.1 Koncepce odkanalizace .. 98
4.3.2 Koncepce odkanalizace s odpadními vodami .. 99
4.3.3 Rekonstrukce a modernizace kanalizačních sítí .. 100
4.3.3.1 Rekonstrukce ÚČOV ... 100
4.3.3.2 Rekonstrukce a intenzifikace na pobočných čistírnách 102
4.3.3.3 Rekonstrukce a modernizace kanalizační sítě ve všech povodech 103
4.4 Vymezení realizačních preferencí ... 103

5 Přehled provozovatelů a vlastníků ... 105
5.1 Provozovatelé .. 105
5.2 Vlastníci .. 105

6 Investiční náklady ... 107
A.2 Popis nadobecních systémů vodovodů a kanalizaci v krají

AKTUALIZACE k roku 2007 - psáno modře
AKTUALIZACE k roku 2010 - psáno červeně
AKTUALIZACE k roku 2016 – psáno zeleně
1 ÚVOD

Plán rozvoje vodovodů a kanalizací hl. m. Prahy je zpracován pro celé území hlavního města.

Technická zpráva „A.2. Popis nadobecních systémů vodovodů a kanalizací v kraji“ obsahuje souhrn informací o demografickém vývoji v hl. m. Praze, zhodnocení současného stavu infrastruktury vodovodů a kanalizací a předpoklady rozvoje území do budoucnosti. Ve zpravě A.2. jsou rovněž popisovány systémy, které svým významem a rozsahem překračují hranice obcí a mají vliv na podstatnou část území kraje. V jednotlivých částech zprávy jsou uvedeny předpoklady a kritéria, na základě kterých bylo navrhováno řešení.

Zpráva A.2. Popis nadobecních systémů vodovodů a kanalizací v kraji obsahuje:

- výpočet potřeby vody a produkce odpadních vod,
- zhodnocení současného stavu zásobení pitnou vodou a likvidace odpadních vod v jednotlivých městských částech, respektive v územích vztahujících se k povodím jednotlivých čistíren odpadních vod v okrajových městských částech a k povodí ÚČOV,
- návrh rozvoje vodovodů a kanalizací zpracovaný s výhledem do roku 2015 – 2050.

Řešení je zaměřeno na:

- splnění požadavků vyplývajících ze vstupu České republiky do Evropské unie,
- návrh potřebných opatření pro zabezpečení provozu stávajících vodovodů a kanalizací v souladu se současnými právními, technickými a provozními požadavky,
- stanovení podmínek pro zásobení pitnou vodou a likvidaci odpadních vod v obcích, které nejsou v současnosti vybaveny vodovodem a kanalizací.

Na zprávu A.2. navazuje zpráva A.3. Popis vodovodů a kanalizací v městských částech, respektive v územích vztahujících se k povodím jednotlivých čistíren odpadních vod v okrajových městských částech a k povodí ÚČOV, která doplňuje předchozí rámcové informace detaily pro jednotlivé části města (povodí). Obsahuje podrobný popis současného a navrhovaného stavu vodovodů a kanalizací v jednotlivých částech města (povodí). Pro každou městskou část je doporučeno řešení jak zabezpečit zásobení pitnou vodou a likvidaci odpadních vod.

Při zpracování návrhů pro jednotlivé části města bylo přihlíženo ke všem záměrům, které se podařilo řešitelům „Plánu rozvoje“ v průběhu jeho zpracování získat. U popisu jednotlivých obcí jsou uvedeny použité podkladové materiály, které se konkrétní obce týkají.

Při zpracování Plánu rozvoje vodovodů a kanalizací hl. m. Prahy byly využívány podklady z Územního plánu hl. m. Prahy, z Koncepčního modelu distribučního systému zásobení vodou hl. m. Prahy, Generelu odvodnění hlavního města Prahy.
A.2 Popis nadobecních systémů vodovodů a kanalizace v kraji

AKTUALIZACE k roku 2007 - psáno modře
AKTUALIZACE k roku 2010 - psáno červeně
AKTUALIZACE k roku 2016 – psáno zeleně
2 CHARAKTERISTIKA ŘEŠENÉHO ÚZEMÍ

2.1 ÚZEMNÍ ČLENĚNÍ KRAJE – HL. M. PRAHY

1.1 DEMOGRAFICKÉ ÚDAJE

1.1.1 ÚZEMNÍ PLÁN HLAVNÍHO MĚSTA PRAHY

Územní plán byl schválen usnesením Zastupitelstva hl. m. Prahy č.10/05 ze dne 9. 9. 1999. Pořizovatelem územního plánu byl Útvar rozvoje hl. m. Prahy.

Závazná část územního plánu je vyhlášena vyhláškou rady Zastupitelstva hl. m. Prahy schválenou usnesením rady Zastupitelstva hl. m. Prahy č. 1156 ze dne 26.10.1999 s účinností od 1.1.2000 jehož závazná část byla vyhlášena vyhláškou hl. m. Prahy č. 32/99 Sb. hl. m. Prahy o závazné části ÚPn SÚ hl. m. Prahy, ve znění pozdějších předpisů. Pro velká rozvojová území je vyhlášena stavební uzávěra vyhláškou hl. m. Prahy č.33/99 Sb. hl. m. Prahy o stavební uzávěře ve velkých rozvojových územích hlavního města Prahy, ve znění pozdějších předpisů. Pro usnadnění práce a sjednocení postupů při používání Územního plánu sídelního útvaru hl. m. Prahy byl schválen Metodický pokyn k Územnímu plánu ke dni 1.11.2002.

Od roku 1999 Územní plán doznal mnoho změn a v současné době plně nevyhovuje potřebám hlavního města. Institut plánování a rozvoje hlavního města Prahy (nástupce Útvaru rozvoje hl. m. Prahy) pořizuje nový Metropolitní plán na základě usnesení Zastupitelstva hl. m. Prahy č. 2M/2 ze dne 7.6. 2012. Prvním krokem při jeho přípravě bylo schválení návrhu zadání zastupitelstvem HMP Usnesením č. 31/6. Metropolitní plán bude zaměřen na sedm hlavních pohledů, na které se při tvorbě bude zaměřovat [P 45]:

- konec rozrůstání města do krajiny - vymezení pásu nezastavitelného území (zeleného rozhraní) pro určení hranice města,
- nastavení výškové regulace - na většině území bude zafixována současná výška budov. Pro výškové stavby bude vymezeno několik lokalit,
- kvalitní veřejná prostranství – dostupnost veřejných prostranství všem bez ohledu na věk, zdravotní stav, finanční poměry,
- ochrana charakteru lokalit – podpora rozmístění jednotlivých čtvrtí vycházející ze stávajícího typu budov
- nové městské parky – pro navýšení kvality života obyvatel a prospěšnější a přívětivější město
- využití potenciálu řeky – pro nová veřejné prostranství a břehy potoků zpřístupnit obyvatelům i návštěvníkům města,
Aktualizace PRVKUK hl.m. Prahy

Popis nadobecních systémů vodovodů a kanalizace v kraji

aktualizace k roku 2007
aktualizace k roku 2010
aktualizace k roku 2016

- vznik nových čtvrtí – přestavba nevyužívaných ploch Českých drah a po různých výrobčních továrnách apod. (tzv. transformační a rozvojové plochy).

1.1.2 DEMOGRAFICKÝ VÝVOJ V PRAZE

Návrh rozvoje města klade důraz na posílení bydlení v existujících částech města, tj. využívání stávajícího bytového fondu, využití rezerv ve stávajícím zastavěném území, kterými jsou prostory, nástavby nebo vestavby do stávajících domů. Jako veřejný zájem je kladeno zachování stávajícího bytového fondu, jeho postupná obnova a modernizace, regenerace a revitalizace stávajících sídlišť a jejich přeměna z monofunkčních na fungující městské čtvrti.

Prognóza vývoje počtu obyvatel v Praze

Tabulka č. 1

<table>
<thead>
<tr>
<th>Rok</th>
<th>Minimální varianta (tis.osob)</th>
<th>Střední varianta (tis.osob)</th>
<th>Maximální varianta (tis.osob)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>1 183,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>1 200</td>
<td>1 254</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>1 110 1 251</td>
<td>1 155 1 278</td>
<td>1 212 1 300</td>
</tr>
<tr>
<td>2025</td>
<td>1 240</td>
<td>1 317</td>
<td>1 364</td>
</tr>
<tr>
<td>2030</td>
<td>1 036 1 262</td>
<td>1 104 1 354</td>
<td>1 173 1 428</td>
</tr>
<tr>
<td>2035</td>
<td>1 259</td>
<td>1 387</td>
<td>1 491,5</td>
</tr>
<tr>
<td>2040</td>
<td>1 253</td>
<td>1 420</td>
<td>1 555</td>
</tr>
<tr>
<td>2050</td>
<td>1 244</td>
<td>1 487</td>
<td>1 688</td>
</tr>
</tbody>
</table>

Územní plán obsahuje také očekávaný vývoj obyvatel v jednotlivých městských částech Prahy a v urbanistických obvodech do roku 2010.

1 I když v prognoze demografického vývoje je předpokládán pokles obyvatel.
Pro potřeby zpracování „Koncepčního modelu“ [P 1], který byl podkladem pro vypracování „Plánu rozvoje vodovodů a kanalizací hl. m. Prahy“, byl definován demografický vývoj, který vychází z územního plánu hlavního města Prahy. Pro rok 2010 předpokládá zachování současného vývoje, tj. 1 200 000 obyvatel, pro rok 2020 jsou pak uvažovány tři varianty: minimální (1 110 000 obyvatel), střední (1 155 000 obyvatel) a maximální (1 212 000 obyvatel). Podle současného vývoje by bylo možné připustit snížení počtu obyvatel v Praze jednak úmrtím a nízkou porodností, ale také vystěhováním obyvatel do současných okresů Praha – východ a Praha – západ do nově postavených rodinných sídel obyvatel a výzev přímožmovou úrovni, nebo se zřejmě předpočítá tak vysoký úbytek obyvatel s jakým uvažuje územní plán. Hlavním důvodem je ekonomické zázemí města Prahy, zaměstnanost a pracovní příležitosti. Obyvatelé, kteří se odstěhují z Prahy budou doplněny migrací obyvatel z regionů, případně ze zahraničí. Snížení počtu obyvatel v Praze z pohledu evropského vývoje by bylo ojedinělé.

V městských částech (podle prognózy Institutu a plánování a rozvoje hl. m. Prahy do roku 2030) je očekáván nárůst obyvatel od 1% do 14% oproti roku 2015, výjma Prahy 4, Prahy 17, Prahy 11, Prahy 1, kde je trend opačný 2-12%.

1.1.3 OBYVATELÉ S ČASOVĚ OMEZENÝM POBYTEM (ČOP)

Počet obyvatel s časově omezeným pobytom není na území hl. m. Prahy systematicky sledován. V zásadě se jedná o přechodné návštěvníky Prahy v širokém spektru charakteru jejich pobytu od turistů, přes obyvatele přijíždějící do Prahy každý den za prací ze Středočeského kraje až po dlouhodobě bydlící, trvale nehlášené obyvatele, žijící v pronajatých bytech či na ubytovnách. Dle odhadů se v současnosti pohybuje na území hl. m. Prahy denně přibližně 200 000 přechodných návštěvníků (ČOP). Do budoucnosti se v maximech předpokládá jejich nárůst až na 500 000.

1.2 HOSPODÁŘSKÝ ROZVOJ ÚZEMÍ

Pro Prahu je charakteristická dlouhodobá posilování sféry služeb a pokles podílu výrobních odvětví. V průmyslu pokračuje restrukturalizace, která vede k uzavírání řady nevyhovujících výrobních závodů a ke snížení jejich nepřínosných dopadů na životní prostředí. Podíl výrobních odvětví na tvorbě přidané hodnoty i zaměstnanosti je v Praze naopak výrazně nižší, než je
celorepublikový průměr. Odvětví průmyslu nemá v hl. m. Praze tak významné postavení jako v jiných regionech ČR.

1.2.1 OBCHOD A SLUŽBY

Základní ekonomická strukturální přestavba se promítá do změn v odvětvové struktuře pražské ekonomiky. Charakteristickým rysem vývoje pražské ekonomiky je posílení obslužné sféry a pokles podílu výrobních odvětví. Služby představují v současnosti v Praze více než 80% přidané hodnoty. V roce 2001 pracovalo ve službách v Praze 77% všech zaměstnaných a v roce 2009 to bylo 80% a k roku 2015 nárůst zaměstnaných ve službách byl okolo 1,4%. Toto zastoupení zaměstnaných v terciéru se již delší dobou nemění.

Rozložení maloobchodní sítě je v současnosti nevyvážené, 30% veškerých nákupních kapacit je soustředěno do obvodu Prahy 1, která se však na pražské populace podílí pouze 4%. Vyhovující obchodní zařízení jsou dale v Praze 2 a 7. V ostatních městských částech je až na potravinářské prodejny maloobchodní síť nedostatečná.

Z hlediska potřeby vody je však třeba uvést, že obchodní zóny (supermarkety) nemají zásadní vliv na velikost potřeby pitné vody v dotčené oblasti.

Další rozvíjející se ekonomické odvětví je cestovní ruch

1.2.2 ADMINISTRATIVA

Administrativní zařízení, která slouží veřejné zprávě státní a městské, jsou ve městě stabilizovaná. Uvolněné plochy po rozpadu ČSSR byly nabídnuty k jiným účelům. Další volné administrativní plochy vznikají v privatizovaných objektech. V současnosti se začíná projevovat naplnění poptávky zejména v centru města, kde je umístěno téměř 70% kancelářských ploch.

Z hlediska potřeby vody je však třeba uvést, že převedení bytového fondu na administrativní plochy s sebou vždy přináší snížení potřeby vody v dané lokalitě. Vznik nových

2 Údaje platí k roku 1999, kdy byl zpracován Územní plán hl. m. Prahy.
administrativních objektů s sebou nepřínáší podstatné zkysení nároků na potřebu vody v dané lokalitě.

1.2.3 VÝROBA A SKLADY

V devadesátých letech došlo v hlavním městě k podstatnému útlumu průmyslové výroby. Průmyslové podniky se vyrovnávají s důsledky privatizace a řada tradičních průmyslových ploch ztrácí svou původní funkci a je zpravidla nahrazována obslužnou sférou, jak obchodní tak i administrativní. Průzkumem současného stavu bylo zjištěno, že téměř žádný průmyslový podnik nepožaduje nové plochy pro svůj rozvoj. Velké průmyslové podniky naopak hledají cesty jak využít plochy pro jiné účely.

Do budoucnosti se předpokládá, že budou z centra města do volných nebo nových ploch přemístěny výrobní a skladovací činnosti, které neúměrně zatěžují komunikační síť, obtěžují obyvatele a mají negativní dopady z hlediska životního prostředí.

K problematice potřeby vody pro výrobu a sklady je třeba zdůraznit, že potřeby v jednotlivých firmách a jejích výhledy do budoucnosti jsou považovány za obchodní tajemství a firmy poskytují pouze minimum informací.

Zdá se však, že je potřeba vody pro výrobu a sklady v současnosti stabilizovaná a není možné do budoucnosti očekávat podstatné změny.

1.3 GEOMORFOLOGIE ÚZEMÍ

Území hl. m. Prahy je značně morfologicky členité. Výškové rozpětí dosahuje 224 m. Nejvyšší bod je v západní části při staré plzeňské silnici u Zličína 399 m n. m., nejnižší je v údolí Vltavy pod Suchdolem 175 m n. m. Morfologický charakter území byl vytvořen zejména erozní a akumulační činností Vltavy a jejích přítoků. Starý, zarovnaný pokřídový reliéf byl zmlazen v pliocénu a pleistocénu silnou erozní činností řeky. Tak vznikla poměrně úzká Pražská kotlina s rozšířením v místě holešovického meandru. Vyvýšené plošiny na obou březích představují zbytky starých zarovnaných povrchů, niže položené pak akumulační povrchy říčních teras. K nejstarším patří křídové plošiny v západní části území – Ruzyně, Přední Kopanina a Lysolaje s výškou 360 – 390 m n. m. Plošiny na pravém břehu Vltavy, založené vesměs na proterozickém podkladu, jsou nižší – Chodov a Libuš 300 – 320 m n. m., Průhonice a Kolovraty 290 – 320 m n. m. Jedinou, poměrně rozsáhlou akumulační plošinou, je plošina s mocným eolickým pokryvem.

1.4 KLIMATICKÉ PODMÍNKY

Klimatické podmínky na území Prahy jsou významně ovlivněny vysokou urbanizací celého území. Z dlouhodobého sledování jednotlivých klimatických charakteristik meteorologickými stanicemi v Klementinu, na Karlově a v Libuši a Ruzyni vyplývají i poměrně velké odlišnosti jednotlivých charakteristik, které jsou dané umístěním stanic na území hl. m. Prahy.
Teplota
Průměrné roční teploty se pohybují v rozmezí 10,1 °C - 10,8 °C v letech 2002 - 2015 v Klementinu po 7,9 °C - 9,98 °C v letech 2002 - 2015 v Ruzyni.

Zastavěná území jsou teplejší v porovnání s okrajem města, případně s nezastavěnými územními celky. Velikost teplotního rozdílu je v ročním průměru kolem 2 °C, ale při specifických klimatických podmínkách může být až 8 °C.

Atmosférické srážky
Roční úhrn srážek v mm/rok se pohybuje od 447 na Karlově po 527 v Ruzyni.

Vzhledem k převažujícím četnostem proudění od jihozápadu a západu jsou nepatrně vyšší srážkové úhrny pouze v letním období (5 – 10 %) na severovýchodním okraji města v oblasti Proseka, Hloubětina, Kbel, Satalic a Kyjí. V centrální části města jsou srážkové úhrny naopak přibližně o 10 % nižší od celopražského průměru.

1.5 HYDROGEOLOGICKÉ PODMÍNKY A POPIS HYDROGEOLOGICKÝCH RAJÓNŮ NA ÚZEMÍ KRAJE

1.5.1 HYDROGEOLOGICKÉ PODMÍNKY

Území hl. m. Prahy leží v severní části bárnanského proterozoika a paleozoika, tvořeného sedimentárními útvary se střídajícími se křemenci, pískovci, drobami, vápenci a břidlicemi. Jedná se o zvrásněné hydrogeologické komplexy. Na vyvýšeninách jsou denundační zbytky svrchnokřídového pokryvu, kde pískovci mají průlinovo – puklinovou propustnost a nadložní slínovce a jílovce mají funkci regionálního izolátoru.

1.5.2 HYDROGEOLOGICKÉ RAJÓNY

Umístění hydrogeologických rajónů na území hl. m. Prahy je patrné ze schématické situace na obr.č. 1.
625. Proterozoikum a paleozoikum v povodí přítoků Vltavy

Hydrogeologický rajón 625 pokrývá prakticky celé území Prahy s výjimkou jižních (Radotín, Zličín, Zbraslav, Komotvary) a severních (Prosek, Loňany, Čakovice) částí. Rajón zahrnuje severovýchodní část spodního paleozoika (silur a devon tvoří rajón 624) s okolním proteozoikem s malou částí křídy v povodí drobných přítoků Vltavy nad ústím Sázavy až po ústí Zákolanského potoka.

Po petrografické stránce lze proterozoikum charakterizovat střídáním břidlic, prachovců a drob, místy filitizovaných.

Hlavním kolektorem je přípovrchová zóna (maximální mocnost 30 – 40 m). V ní je vytvořena zvodeň s volnou nebo polonapjatou hladinou podzemní vody. Výška hladiny podzemní vody je přímo závislá na srážkách, které jsou hlavní dotací kolektoru. V horninách cenomanu má proudění směr SV. Hlavní erozní bází je tok Vltavy.

Zdroje mělkého obzoru jsou rozptylené a mají obvykle malou výdatnost (max. 1,1 l/s). Jsou jímány pomocí zářezů, kopaných studní či mělkých vrtů pro místní zásobování. Na území hl. m. Prahy se jedná o zdroje pro pivovar Smíchov 17 l/s, pro bývalý pivovar v Holešovicích 14 l/s a pivovar Braník 13 l/s. Určitou výjimku tvoří zdroje v cenomanu.

Po chemické stránce jsou podzemní vody rovněž různorodé. Plošně nejrozšířenějšími typy jsou Ca(Mg) – HCO₃ a Ca(Mg) – SO₄ a smíšené. Místy se vyskytuje Na – HCO₃ typ. Celková mineralizace je nízká a pohybuje se v rozmezí 0,2 – 0,4 g/l. Výjimku tvoří některé vody ordoviku, kde mineralizace dosahuje i několika g/l. Kvalitativně nevyhovují požadavkům kladeným na pitnou vodu.

624. Silur a devon barrandienu

Hydrogeologický rajón 624 se dotýká malé části jihu Prahy v prostoru Radotína, Zličínu a Komotvan. Území rajónu představuje jádro barrandienské synklinály těsně představuje se směrem na JZ v délce cca 40 km.

Rajón je vymezen bází karbonátové sedimentace v sírulu (ludlov – souvrství kopaninské). Komplex karbonátových sedimentů středního siluru až spodního devonu je intenzivně deformován do systému vrás s osmi přiřazení na Hz – JZ a porušen četnými směrnými přesmyky.

Propustnost karbonátových hornin je puklinová a krasová. Oběh podzemní vody je omezen vlivem neúplného vývoje krasu a složitou tektonikou, která rajón rožmoji na řadu dílčích hydrogeologických struktur obdobně jako hluboce zaříznutá mladá erozní údolí.

Hydrogeologická propustnost bezprostředního podloží (ordoviku) a silurských břidlic je obdobná.

Voda se dostává do mělké svodně jednak jako infiltrovaná srážková voda v celé ploše výskytu mělkých kolektorů, jednak však z povrchových toků. Hladina podzemní vody je volná, její průběh je konformní s terénem. K nejživějšímu oběhu patří začínají vzdušné vody, které jsou intenzivně drénována prameny a skrytými výrony do sutí, údolních výlevů či povrchových toků. V zóně hlubšího oběhu lze vyčlenit dílčí svodné ve vápencích, vyznáné na propustnějších puklinách, tektonické poruchy a krasové prostory.

Převážnou část území odvodňuje Berounka, severozápadní část Vltava.

Jako celek je rajón málo významný pro využití v širším rozsahu. Zdroje jsou málo výdatné a nestálé a svodné oběhu v prostředí s kvapalovou propustností náchylné k znečištění. Voda je vhodné jako depot, převážně typu Ca – HCO₃ – SO₄.
135. Kwartérní sedimenty Dolní Berounky a oblasti soutoku s Vltavou
Hydrogeologický rajón 135 se dotýká Prahy v prostoru soutoku Vltavy s Berounkou. Hydrogeologický rajón je vymezen v kvartérních fluviálních uloženinách v údolí níže dolního toku Berounky v úseku od obce Lety po soutok s Vltavou a na Vltavě v úseku levého břehu mezi Zbraslaví a malou Chuchlí.

Svrchní část fluviálních uloženin cca do hloubky 2 – 3 m je tvořena převážně jílovitými sedimenty, níže štěrkopísky a písky. Podložím je barrandienské paleozoikum, nezkrasovělé.

Z hydrogeologického hlediska má největší význam soutoková oblast u Lahoviček, kde specifická výdatnost podzemních vod na levém břehu Berounky dosahuje 14 l/s×m.

Dotace podzemní vody je dána srážkami a infiltrací z řek (převážně v úsecích se vzdutím). Podloží hornin barrandienu převážně v pelitickém vývoji (ordovik) tvoří okrajovou podmínku.

451. Křída severně od Prahy
Hydrogeologický rajón 451 zasahuje do severní části Prahy v oblasti Letňan, Čakovice, Proseka a Dařic.

Rajón zahrnuje plochu levostřanných přítoků Labe od Čelákovic po Mělník a pravostranných přítoků Labe mezi Starou Boleslaví a Mělníkem. V rajónu je nesouvisle vyvinut jeden samostatný kolektor podzemní vody křídové pánve. Tento bazální kolektor A je vázan na psamity a aleurity cenomanského stáří. V nadloží kolektoru je lokálně vyvinut izolátor spodnoturonského stáří, místně s omezenou funkcí.

Propustnost kolektoru A je průlinově puklinová a oběh podzemní vody není výrazně ovlivněn tektonickými prvky. Infiltrační plochy leží na ploše rajónu na levém břehu Labe a dotace kolektoru se děje prostřednictvím polopropustných poloh nadložního izolátoru. Infiltirační plochy na pravém břehu leží mimo území rajónu. Podzemní vody kolektoru se odvodňují prostřednictvím kvartérních sedimentů do místních a hlavní erozní báze.

Chemické složení podzemních vod kolektoru A je typu Ca – Mg – HCO₃, s celkovou mineralizací 400 – 800 mg/l, v menší míře je jedná o typ Na – Ca – HCO₃, s celkovou mineralizací v průměru 1000 mg/l. Vody vyžadují náročnou technologii úpravy snižením Ca+Mg a HCO₃ iontů.

Z rajónu je vodohospodářsky významný pouze kolektor A.

1.6 POPIS EKOLOGICKÝ VÝZNAMNÝCH ÚZEMÍ, CHRÁNĚNÁ KRAJINNÁ ÚZEMÍ

Na území hl. m. Prahy se nenacházejí CHOPAV nebo CHKO, ale v jižní části Prahy se nachází CHKO Český kras. Evidována je řada lokalit na úrovni Zvláště chráněných území (ZCHÚ) a Územní systémy ekologické stabilitě (ÚSES).

P 1] vyplývá doporučení nerealizovat posun odběru surové vody nad soutok Vltavy s Berounkou.
I když je úpravna vody v současnosti využívána jako „studena rezerva“ je třeba i do budoucnosti garantovat podmínky hospodaření v pásmech hygienické ochrany pro případ uvedení úpravny vody do provozu.

1.7 PŘEHLED VÝZNAMNÝCH VODOTECÍ A VODNÍCH PLOCH

Území hl. m. Prahy patří vodohospodářsky ke třem povodím, tj. Berounky, Vltavy a Labe. Berounka protéká městem v délce 9,2 km, Vltava v délce 30,5 km. Labe územím města neprotéká, zasahuje město jen povodím svých přítoků – Mratínského, Vinořského a Jirenského potoka – přítoku Výmoly.

Páteří města je řeka Vltava s hlavním přítokem Berounkou. Kromě ní Vltava sbírá na pravém a levém břehu další potoky, které svými údolími vytvářejí reliéf města. Celková délka sítě těchto vodních toků s menším povodím včetně toků, které přísluší do povodí Labe, dosahuje na území Prahy délky 290 km.

Vltava mimo řady dalších funkcí, jako je odvedení vod z území Prahy, lodní doprava, rekreační apod., slouží v profilu Podolí jako zdroj surové vody pro její úpravu na vodu pitnou v úpravě vody Podolí a v profilu Libeňského ostrova jako zdroj vody pro průmyslový vodovod.
Popis nadobecních systémů vodovodů a kanalizací v kraji

AKTUALIZACE k roku 2007 - psáno modře
AKTUALIZACE k roku 2010 - psáno červeně
AKTUALIZACE k roku 2016 – psáno zeleně
3 PODKLADY

P 3 Územní plán hlavního města Prahy, Útvar rozvoje hl. m. Prahy, ing.arch.Petr Durdík, 1999
P 4 Metodický pokyn pro zpracování Plánů rozvoje vodovodů a kanalizací kraje, Mze ČR z roku 2002, č.j. 10 534/2002-6000
P 5 Vodovody, Kanalizace, ČR 2002, Ministerstvo zemědělství ČR
P 6 ČSN 75 7214 – Surová voda pro úpravu na pitnou vodu
P 7 Vyhláška Ministerstva zdravotnictví č.252/2004 Sb., ve znění pozdějších předpisů, kterou se stanoví požadavky na pitnou vodu a rozsah a četnost její kontroly
P 8 Směrnice rady EU 98/83/EHS, o jakosti vody určené pro lidskou spotřebu
P 9 Zákon č.258/2000 Sb. o ochraně veřejného zdraví a o změně některých souvisejících zákonů, ve znění pozdějších předpisů
P 10 Zákon č.274/2001 Sb. o vodovodech a kanalizacích pro veřejnou potřebu, ve znění pozdějších předpisů, a prováděcí vyhláška č.428/2001 Sb., ve znění pozdějších předpisů
P 11 Systémová obnova vodovodní a kanalizační sítě, Pražské vodovody a kanalizace a.s., ing.Motl, CSc., prosinec 1998
P 13 Nařízení vlády č.61/2003 Sb. ze dne 29.ledna 2003 o ukazatelích a hodnotách přípustného znečištění povrchových a odpadních vod, náležitostech povolení k vypouštění odpadních vod do vod povrchových a do kanalizací a o citlivých oblastech
P 14 Plán rozvoje vodovodů a kanalizací kraje a „Aglomerace“ dodatek číslo 1 - metodického pokynu pro zpracování Plánu rozvoje vodovodů a kanalizací kraje - č.j. 7 869/2004-7000

Aktualizace 2007:
P 15 Technologický audit ÚV Káraný, Hydroprojekt CZ a.s.,Ing. Arnošt Vožech, prosinec 2005
P 16 Technologický audit ÚV Želivka, Hydroprojekt CZ a.s.,Ing. Arnošt Vožech, listopad 2005
P 18 EKOEFKT speciál, Ročník XV, květen 2006

Aktualizace 2010
P 19 Údaje zveřejněné na stránkách Českého statistického úřadu
P 20 Vodovody, Kanalizace, ČR 2008, Ministerstvo zemědělství ČR
P 21 Zdroj pitné vody Káraný, ÚV Sojovice - Rekonstrukce filtrace I - Čerpaní stanice, č. akce 3/7/892/00 Hydroprojekt CZ a.s.,Ing. Arnošt Vožech, červen 2010
P 22 Úpravna vody Želivka Rekonstrukce přípravy suspenze pro II. a III. linku filtrace, Hydroprojekt CZ a.s.,Ing. Arnošt Vožech, listopad 2010
P 23 ÚV Želivka - posouzení možností umístění flotace v prostoru linek L2 a L3 filtrace 2, Hydroprojekt CZ a.s., Ing. Arnošt Vožech, únor 2011
AKTUALIZACE k roku 2007 - psáno modře

AKTUALIZACE k roku 2010 - psáno červeně

AKTUALIZACE k roku 2016 – psáno zeleně

P 24 Generel zásobování vodou hl. m. Prahy, dílčí projekt Detailní fáze pro území Smíchov, Košíře, Motol, Jinonice, Radlice, Zličín, Hydprojekt CZ a.s., Ing. Jindřich Šesták, únor 2010

P 25 http://www.kolektory.cz/

P 26 http://www.pvs.cz/

P 27 Nařízení vlády č. 416/2010 ze dne 14. prosince 2010 o ukazatelích a hodnotách přípustného znečištění odpadních vod a náležitostech povolení k vypouštění odpadních vod do vod podzemních

P 28 Vyhláška 268/2009 Ministerstva pro místní rozvoj o technických požadavcích na stavby

P 30 Generel odvodnění hl. m. Prahy – II.detalní fáze - Modřany - Komořany zahrnující území Modřan, Komořany, Libuše, Písnice, Cholupic, Točně, Hodkoviček, Kamyka, části Braníka a Zbraslaví, 05/2009

P 31 Generel odvodnění hl.m. Prahy – dílčí projekt; II. detailní fáze pro území Hlubočepy – Holný, 01/2007

P 33 Generel zásobování vodou hl. m. Prahy detailní fáze pro území Podolí, Michle, Nusle, Krč, Bráník, 03/2009

P 34 Generel zásobování vodou hl. m. Prahy, dílčí projekt, fáze pro území jihovýchodní části Prahy; Újezd u Průhonice, Pitkovic, Křeslice, Benice, Kolovraty, Uhlířštěvy, Petrovice, Dolní Měcholupy, Dubče, Štěrboholy, Šebrov, Hostavice, Dolní Počernice, Běchovice, Klánovice, Újezd nad Lesy, Koloděje, Hájek, Královice, Benice, Nedvězí a Lipany, 12/2007

P 35 Generel odvodnění hl.m. Prahy – II. fáze – „Kbely - Vinoř“ zahrnující území Kbel, Satalic a Vinoře, 09/2009

P 36 Generel odvodnění Koloděje, 01/2005

P 38 Územní opatření, kterým se zrušuje rozhodnutí Útvaru hlavního architekta hl.m. Prahy č.j. 16202/90-AMLI ze dne 28.12.1999 o stavební uzávěře pro přivaděč surové vody pro vodárnu Podolí, Usnesení Rady hlavního města Prahy číslo 100 ze dne 1.2.2011.

P 40 Rozhodnutí Ministerstva životního prostředí, odboru výkonu správy, věci odvodení, č.j. 1826/500/10/72914/ENV/10 ze dne 4. 10. 2010

P 42 Metodické doporučení Státního zdravotního ústavu (SZÚ) – Národního referenčního centra pro pitnou vodu, SZÚ, 8. 8. 2007, CHŽP-357/07

P 43 Detailní fáze generelu zásobování vodou území Horní Počernice, Satalice, Kbely, Vinoř a části Letňan a Vysočany, d-plus, 04/2011 – rozpracováno

P 44 Detailní fáze Generelu zásobování vodou - Studie optimalizace návrhových parametrů a postupu obnovy řadu DN 1200 VDJ Chodová – Kyžský uzel, d-plus, 02/2005
Aktualizace 2016

P 45 http://plan.iprprahe.cz/cs/metropolitni-plan
P 47 http://apl.czso.cz/irso4/cisdet,
P 48 Generel zásobování vodou hl. m. Prahy, detailní fáze pro území Smíchov, Košíře, Motol, Jinoice, Radlice, Zličov, 02/2010
P 49 Generel zásobování vodou hl. m. Prahy, detailní fáze pro území Vinohrady, Vršovice, Strašnice, Malešice a Žižkov, 02/2012
P 50 Generel zásobování vodou hl. m. Prahy - detailní fáze pro území Braník, Hodkovičky, Modřany, Kamýk, Točná, Cholupice, Písnice, Libuš, Lhotka a Kunratice, 09/2014
P 51 Generel zásobování vodou hl. m. Prahy, detailní fáze pro území Žižkov, Letňany, Kobylysi, Střížkov, Prosek, Bohnice, Troja, Čimice, Dolní Chabry, Březiněves, Třeboradice, Čakovice a Miškovice, 04/2016
P 52 Generel zásobování vodou hl. m. Prahy, detailní fáze pro území Libeň, Vysočany, Hloubětín, 12/2016
P 53 Návrh střednědobého investičního plánu vodohospodářské infrastruktury hlavního města Prahy v letech 2017-2021
P 54 Aktualizace Plánu rozvoje vodovodů a kanalizací hl.m. Prahy, 4/2007
P 55 Aktualizace Plánu rozvoje vodovodů a kanalizací hl.m. Prahy, 2/2011
P 56 Generel odvodnění hl. m. Prahy – II.detailní fáze – východní část Prahy povodí ÚČOV Běchovice, Černý Most, Dolní Počernice, Hostavice, Kyje, část Hloubětín, Štěrbohol a Horních Počernic, 10/2011
P 57 Generel odvodnění hl. m. Prahy – II.detailní fáze – východní část Prahy – povodí PČOV zahrnující území Klánovic, Újezda nad Lesy a část Horních Počernic, 07/2012
P 58 Generel odvodnění hl. m. Prahy – II.detailní fáze – Chodov, Háje, Hostivař, Záběhlice, část Újezdu u Průhonic, 02/2015
A.2 Popis nadobecních systémů vodovodů a kanalizací v kraji

AKTUALIZACE k roku 2007 - psáno modře
AKTUALIZACE k roku 2010 - psáno červeně
AKTUALIZACE k roku 2016 – psáno zeleně
4 VODOVODY – ZÁSOBENÍ PITNOU VODOU

4.1 VÝPOČET A BILANCE POTŘEBY VODY

4.1.1 POČET OBYVATEL ZÁSOBENÝCH PITNOU VODOU

Podle podkladů uveřejněných v ročence Vodovody a kanalizace, ČR 2002 [P 5] bylo v roce 2002 zásobeno 1 154 000 obyvatel, tj. 99,6 % zásobených obyvatel, necelé 1 % je zásobeno ze soukromých studní. Voda je přivedena téměř do všech oblastí města, ale v některých částech není dosud v plném rozsahu dokončen rozvod vody.

Podle podkladů uveřejněných v ročence Vodovody a kanalizace, ČR 2008 [P 20] bylo v roce 2008 zásobeno 1 224 700 obyvatel 3, tj. 100 % zásobených obyvatel, necelé 1 % je zásobeno ze soukromých studní. Voda je přivedena téměř do všech oblastí města, ale v některých částech není dosud v plném rozsahu dokončen rozvod vody.

Do budoucnosti se počítá se 100 % zásobením trvale bydličích obyvatel na území hl. m. Prahy.

4.1.2 VÝPOČET POTŘEBY VODY

Problematikou výpočtu potřeby vody se podrobně zabýval „Koncepční model“ [P 1] dokončený v roce 2002. V koncepčním modelu byl proveden podrobný rozbor jednotlivých složek potřeby vody:

- specifická potřeba z vody fakturované obyvatel,
- specifická potřeba z vody fakturované ostatní,
- specifická potřeba z vody nefakturované – byly zpracovány jednotlivé scénáře vývoje jednotlivých složek vody nefakturované a očekávaného postupu rekonstrukcí vodovodních sítí na území hl. m. Prahy.

Od roku 1990 do roku 2000 došlo především v důsledku zavedení nákladových cen k poklesu celkové specifické spotřeby vody vyrobené z 540 l/os×den na 336 l/os×den. U jednotlivých složek specifické spotřeby v uvedeném období došlo k následujícímu snížení:

- voda fakturovaná celkem z 352 l/os×den na 218 l/os×den,
- voda fakturovaná domácnosti z 209 l/os×den na 143 l/os×den,
- voda fakturovaná ostatní ze 143 l/os×den na 75 l/os×den
- voda nefakturovaná ze 188 l/os×den na 118 l/os×den, tj. 35,1 % z vody vyrobené celkem.

Od roku 2004 do roku 2015 trend poklesu specifické potřeby vody stále klesá celkové specifické spotřeby vody vyrobené z 287 l/os×den na 208 l/os×den. U jednotlivých složek specifické spotřeby v uvedeném období došlo k následujícímu snížení:

- voda fakturovaná celkem z 213 l/os×den na 168 l/os×den,
- voda fakturovaná domácnosti z 130 l/os×den na 106 l/os×den,
- voda fakturovaná ostatní ze 78 l/os×den na 63 l/os×den
- voda nefakturovaná ze 78 l/os×den na 31 l/os×den, tj. 18,9 % z vody vyrobené celkem.

3 Počet obyvatel hl. m. Prahy v roce 2010 je 1 254 000. Údaje o zásobování vodou jsou dostupné za rok 2008.
V celkové specifické spotřebě je zahrnuto množství vody pro trvale i přechodně bydlící a dojíždějící do zaměstnání.

Z posouzení jednotlivých složek specifické potřeby vody v letech 1983 až 2000 je patrný: rovnoměrný pokles pokles specifické potřeby vody fakturované domácností, který se zastavil zhruba v letech 1997 – 1998 a od té doby již tato složka specifické spotřeby stagnuje,
• obě složky se promítají do součtu, tj. do vody fakturované celkem. Zde je třeba poznamenat, že příčinou zastavení poklesu specifické potřeby vody fakturované zřejmě ovlivnil i vývoj vody nefakturované. Především odstranění závad ve fakturaci mohlo vést k mírnému nárůstu objemu vody fakturované, který kompenzoval pokračující pokles,

Výhledová specifická potřeba v hlavním městě Praze je podle variant ve vodě vyrobené k realizaci k roku 2020 279 l/os×den – 2,0 % rekonstrukce sítí, 1212000 zásobených obyvatel a 332 l/os×den – 0 % rekonstrukce sítí, počet zásobených obyvatel 1100000.

4 Tyto hodnoty specifické potřeby vody jsou uvažovány pro centrální část hl. m. Prahy, jejíž plocha je vymezena povodím centrální části odpadních vod.
Vývoj potřeby vody na území hl. m. Prahy

Tabulka č. 2

<table>
<thead>
<tr>
<th>Rok</th>
<th>2000</th>
<th>2005</th>
<th>2010</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Počet zásobených obyvatel</td>
<td>tis.obyv.</td>
<td>1184</td>
<td>1192</td>
<td>1200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1172</td>
<td>1254</td>
<td>1264</td>
</tr>
<tr>
<td>Voda vyrobená určená k realizaci (VVR)</td>
<td>l/os×den</td>
<td>336</td>
<td>282</td>
<td>285</td>
</tr>
<tr>
<td></td>
<td></td>
<td>276</td>
<td>231</td>
<td>208</td>
</tr>
<tr>
<td>Voda fakturovaná celkem (VFC)</td>
<td>l/os×den</td>
<td>218</td>
<td>214</td>
<td>226</td>
</tr>
<tr>
<td></td>
<td></td>
<td>203</td>
<td>104</td>
<td>168</td>
</tr>
<tr>
<td>Voda fakturovaná domácností (VFD)</td>
<td>l/os×den</td>
<td>143</td>
<td>144</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>127</td>
<td>104</td>
<td>106</td>
</tr>
<tr>
<td>Voda fakturovaná ostatní (VFO)</td>
<td>l/os×den</td>
<td>75</td>
<td>75</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>76</td>
<td>74</td>
<td>78</td>
</tr>
<tr>
<td>Voda nefakturovaná (VNF)</td>
<td>l/os×den</td>
<td>118</td>
<td>64</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>73</td>
<td>53</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>tis.m³/(rok *km)</td>
<td>10</td>
<td>7,2</td>
<td>6,6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8,8</td>
<td>5,5</td>
<td>6,9</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>35,1</td>
<td>22,8</td>
<td>20,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26,6</td>
<td>22,9</td>
<td>18,9</td>
</tr>
</tbody>
</table>

Pro okrajové části Prahy (vymezených jednotlivými povodími čistíren odpadních vod) jsou jednotlivé složky specifické potřeby vody uvedeny v tabulkové části.

4.1.3 BILANCE POTŘEBY VODY

Bilance potřeby je vypracována pro území hl. m. Prahy jako celek. V tabulce č. 3 a č. 4 je uvedena jak potřeba vody na území hl. m. Prahy tak i odhady potřeby vody na území Středočeského kraje a kraje Vysočina v letech 2000 - 2015.

Uvedený přehled dokládá, že není nutná dostavba dalších zdrojů. Přebytek kapacity ve zdrojích bude tvořit rezervu pro připojení dalších obyvatel a provozní rezervu pro případ mimořádných krizových událostí.

V posledních letech se projevují klimatické změny, které nepříznivě ovlivňují hydrologické poměry ve vodních tocích a v mělkých vrtěch. Tyto negativní jevy způsobují v oblastech Středočeského kraje nedostatek pitné vody. Takto vzrůstající mimopražské odběry vody nepříznivě ovlivňují bilanci potřeby vody i distribuci vody přes síť hl. m. Prahy. Zejména stoupající špičkové odběry vody pro Středočeský kraj a absence vodojemů ve Středočeském kraji neúměrně zatěžují distribuční síť hl. m. Prahy.

5 Tabulky č.VII – vodovody – bilanční údaje
6 Údaje jsou převzaty z „Koncepčního modelu“ [P1] a z údajů převzatých z PVK pro rok 2005. Koordinace mezi jednotlivými PRVKUK bude řešit Ministerstvo zemědělství ČR při sestavování celorepublikového PRVKUR.
Bilance potřeby vody – průměrná denní potřeba vody

Tabulka č. 3

<table>
<thead>
<tr>
<th>Rok</th>
<th>2000</th>
<th>2005</th>
<th>2010</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Průměrná denní potřeba vody</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v hl. m. Praze l/s</td>
<td>4604</td>
<td>3891</td>
<td>3958</td>
<td>3877</td>
</tr>
<tr>
<td>mimopražských odběrů l/s</td>
<td>4611</td>
<td>3743</td>
<td>3352</td>
<td>3036</td>
</tr>
<tr>
<td>celkem l/s</td>
<td>5054</td>
<td>4356</td>
<td>4453</td>
<td>4381</td>
</tr>
<tr>
<td>Zdroje pitné vody</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Želivka l/s</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
</tr>
<tr>
<td>Káraný l/s</td>
<td>1750</td>
<td>1750</td>
<td>1750</td>
<td>1750</td>
</tr>
<tr>
<td>Podolí l/s</td>
<td>2200</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>celkem l/s</td>
<td>8950</td>
<td>6750</td>
<td>6750</td>
<td>6750</td>
</tr>
<tr>
<td>Bilance l/s</td>
<td>3896</td>
<td>2394</td>
<td>2297</td>
<td>2359</td>
</tr>
<tr>
<td>Využití zdrojů %</td>
<td>56,5</td>
<td>62,1</td>
<td>57,1</td>
<td>51,9</td>
</tr>
</tbody>
</table>

Bilance potřeby vody – maximální denní potřeba vody

Tabulka č. 4

<table>
<thead>
<tr>
<th>Rok</th>
<th>2000</th>
<th>2005</th>
<th>2010</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kd - koeficient denní nerovnoměrnosti v Praze</td>
<td>1,23</td>
<td>1,28</td>
<td>1,29</td>
<td>1,29</td>
</tr>
<tr>
<td>Maximální denní potřeba vody</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v hl. m. Praze l/s</td>
<td>5663</td>
<td>4980</td>
<td>5108</td>
<td>5001</td>
</tr>
<tr>
<td>mimopražských odběrů l/s</td>
<td>5672</td>
<td>4791</td>
<td>4324</td>
<td>3916</td>
</tr>
<tr>
<td>celkem l/s</td>
<td>6147</td>
<td>5286</td>
<td>4860</td>
<td>4526</td>
</tr>
<tr>
<td>Zdroje pitné vody</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Želivka l/s</td>
<td>6900</td>
<td>6900</td>
<td>6900</td>
<td>6900</td>
</tr>
<tr>
<td>Káraný l/s</td>
<td>1900</td>
<td>1900</td>
<td>1900</td>
<td>1900</td>
</tr>
<tr>
<td>Podolí l/s</td>
<td>2500</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>celkem l/s</td>
<td>11300</td>
<td>8800</td>
<td>8800</td>
<td>8800</td>
</tr>
<tr>
<td>Bilance l/s</td>
<td>5012</td>
<td>3125</td>
<td>2958</td>
<td>2992</td>
</tr>
<tr>
<td>Využití zdrojů %</td>
<td>55,0</td>
<td>63,7</td>
<td>65,6</td>
<td>65</td>
</tr>
</tbody>
</table>

7 Voda převzatá
8 Voda převzatá – ÚV Sojovice
9 Údaje jsou převzaty z „Konceptního modelu“ [P 1] a z údajů převazatých z PVK pro rok 2005. Koordinace mezi jednotlivými PRVKUK bude řešit Ministerstvo zemědělství ČR při sestavování celorepublikového PRVKUR.
10 Úpravna vody Podolí má stanoven maximální výkon 2500 l/s. Vzhledem k tomu, že byla v roce 2002 uvedena do studené rezervy je pro následující roky uvažována s nulovou hodnotou výkonu.
11 Kapacita štolového přivaděče z úpravny vody Želivka do vodojemu Jesenice je 6750 l/s. Úpravna vody Podolí má stanoven maximální výkon 2500 l/s. Vzhledem k tomu, že byla v roce 2002 uvedena do studené rezervy je pro následující roky uvažována s nulovou hodnotou výkonu.
K negativním faktorům, které ovlivňují potřebu vody, i její dopravu je třeba přičíst očekávané výluky dopravy vody ze štolového přivaděče.

V níže uvedených bilančních tabulích uvádíme rozbor potřeb vody pro několik variant včetně demografického vývoje a distribuci vody:

<table>
<thead>
<tr>
<th>Tabulka</th>
<th>Výše dat</th>
<th>Jednotky</th>
<th>Obsah</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabulka V10-ŽKQ</td>
<td>bilance vody</td>
<td>průměrná denní potřeba vody</td>
<td>pouze pro hl.m. Praha</td>
</tr>
<tr>
<td>Tabulka V11-ŽKQ</td>
<td>bilance vody</td>
<td>maximální denní potřeba vody</td>
<td>pouze pro hl.m. Praha</td>
</tr>
<tr>
<td>Tabulka V12-KQ</td>
<td>bilance vody</td>
<td>průměrně denní potřeba vody</td>
<td>pouze pro hl.m. Praha</td>
</tr>
<tr>
<td>Tabulka V13-KQ</td>
<td>bilance vody</td>
<td>maximální denní potřeba vody</td>
<td>pouze pro hl.m. Praha</td>
</tr>
<tr>
<td>Tabulka V20-ŽKQ</td>
<td>bilance vody</td>
<td>maximální denní potřeba vody</td>
<td>pro hl.m. Prahu a Středočeský kraj</td>
</tr>
<tr>
<td>Tabulka V21-ŽKQ</td>
<td>bilance vody</td>
<td>maximální denní potřeba vody</td>
<td>pro hl.m. Prahu a Středočeský kraj</td>
</tr>
<tr>
<td>Tabulka V22-KQ</td>
<td>bilance vody</td>
<td>průměrně denní potřeba vody</td>
<td>pro hl.m. Prahu a Středočeský kraj</td>
</tr>
<tr>
<td>Tabulka V23-KQ</td>
<td>bilance vody</td>
<td>maximální denní potřeba vody</td>
<td>pro hl.m. Prahu a Středočeský kraj</td>
</tr>
</tbody>
</table>

Aktualizace PRVKUK hl.m. Prahy

A.2 Popis nadobecních systémů vodovodu a kanalizace v kraji

PRVKUK

AKTUALIZACE k roku 2007 - psáno modře
AKTUALIZACE k roku 2010 - psáno červeně
AKTUALIZACE k roku 2016 – psáno zeleně

Sweco Hydroprojekt a.s.
pouze ÚV Káraný pro *vysokou* variantu demografického vývoje. Kapacita združí nedostatečná již nyní.

Tabulka S10-ŽKQₚ

<table>
<thead>
<tr>
<th>do roku 2007 - psáno modře</th>
<th>AKTUALIZACE k roku 2010 - psáno červeně</th>
</tr>
</thead>
<tbody>
<tr>
<td>pouze ÚV Káraný pro vysokou variantu demografického vývoje. Kapacita združí nedostatečná již nyní.</td>
<td></td>
</tr>
</tbody>
</table>

Tabulka S10-ŽKQₖ

| pouze ÚV Káraný pro vysokou variantu demografického vývoje. Kapacita združí nedostatečná již nyní. | |

Tabulka S11-ŽKQ₄

| pouze ÚV Káraný pro vysokou variantu demografického vývoje. Kapacita združí nedostatečná již nyní. | |

Tabulka S12-KQₙ

| pouze ÚV Káraný pro vysokou variantu demografického vývoje. Kapacita združí nedostatečná již nyní. | |

Komentář k vývoji potřeby vody:

Zhruba do roku 2015 se projevoval pokles specifické potřeby vody. Do budoucnosti je možné předpokládat zachování současného stavu, protože je specifická potřeba vody s ohledem na její hodnotu téměř na minimálních hygienických hodnotách.

Do nárůstu potěhy vody se začne promítat pouze nárůst počtu zásobených obyvatel.
Vývoj potřeby vody je ovlivňován (zkreslován). Přechodně bydlícími obyvateli, kteří nejsou trvale hlášení anebo nejsou jinak evidováni (dojíždějící za práci, turisté, studující apod.) .

Z níže uvedených bilančních tabulek je patrné, jakým rizikem je výpadek stávajících využívaných zdrojů. Na základě prezentovaných bilančních tabulek a zjištěných skutečností v povodí řeky Jizery a zkušeností s odstávkou štolového přivaděče doporučujeme z dlouhodobého hlediska pro diverzifikaci zdrojů:

- rizikovou analýzu zásobení vodou ve Středočeské vodárenské soustavě, zejména redukce dodávek pitné vody při odstávce ÚV Želivka,
- zvážit možnosti zvýšení kapacity ÚV Káraný doplněním dalších vsakovacích van, posoudit podmínky pro vyrovnanější průtok vody v Jizere (výstavba vodárenské nádrže na horním toku),
- uvedení ÚV Podolí do trvalého provozu, zhodnotit možnosti doplnění stávající technologie o další stupně úpravy vody,
- spolupráci s vodárenskými společnostmi a příslušnými orgány státní správy Středočeského kraje při distribuci pitné vody ze Středočeské vodárenské soustavy s cílem zachovat stávající zdroje pitné vody na území Středočeského kraje a vyhledávat potenciální zdroje, které by bylo možné využít do budoucnosti.
Bilance pro Prahu tab. V1

Vysoká varianta demografického vývoje

Standardní provoz ÚV Želivka + ÚV Káraný

Tabulka V10_ŽK_Qp

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>v hl. m. Praze</td>
<td>l/s</td>
<td></td>
</tr>
<tr>
<td>Průměrná denní potřeba vody</td>
<td></td>
</tr>
<tr>
<td>mimopražské odběry</td>
<td></td>
</tr>
<tr>
<td>ÚV Želivka + odběry ze štoly</td>
<td>l/s</td>
<td>153</td>
<td>167</td>
<td>163</td>
<td>166</td>
<td>169</td>
<td>170</td>
<td>173</td>
<td>174</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>odběry přes distribuční systém Prahy</td>
<td>l/s</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ÚV Káraný a Káranské řady</td>
<td>l/s</td>
<td>68</td>
<td>78</td>
<td>67</td>
<td>67</td>
<td>67</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>mimopražské odběry celkem</td>
<td>l/s</td>
<td>221</td>
<td>245</td>
<td>230</td>
<td>233</td>
<td>236</td>
<td>237</td>
<td>241</td>
<td>243</td>
<td>244</td>
<td></td>
</tr>
<tr>
<td>celkem</td>
<td>l/s</td>
<td>4 611</td>
<td>3 743</td>
<td>3 573</td>
<td>2 879</td>
<td>3 239</td>
<td>3 390</td>
<td>3 541</td>
<td>3 690</td>
<td>3 841</td>
<td>3 994</td>
</tr>
</tbody>
</table>

Zdroje pitné vody

Želivka - odběr před VDJ Jesenice	l/s	153	167	163	166	169	170	173	174	175			
Želivka - odběr z VDJ Jesenice	l/s	2 697	2 683	2 687	2 684	2 681	2 680	2 677	2 676	2 675			
Želivka celkem	l/s	2 850	2 850	2 850	2 850	2 850	2 850	2 850	2 850	2 850	2 850		
Káraný	l/s	1 400	1 400	1 400	1 100	1 100	1 100	1 100	1 100	1 100	1 100		
Podolí	l/s	1 800	0	0	0	0	0	0	0	0			
celkem	l/s	6 050	4 250	4 250	3 950	3 950	3 950	3 950	3 950	3 950	3 950		
Bilance	l/s	1 439	507	677	1 071	711	560	409	260	109	-44	-201	
Bilance pro Prahu tab. V1

Vysoká varianta demografického vývoje

Standardní provoz ÚV Želivka + ÚV Káraný

Tabulka V11_ŽK_Q

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kd - koeficient denní nerovnoměrnosti v Praze</td>
<td>1,23</td>
<td>1,28</td>
<td>1,29</td>
<td>1,29</td>
<td>1,29</td>
<td>1,29</td>
<td>1,29</td>
<td>1,29</td>
<td>1,29</td>
<td>1,29</td>
<td>1,29</td>
</tr>
<tr>
<td>Maximální denní potřeba vody</td>
<td>l/s</td>
<td>5 672</td>
<td>4 791</td>
<td>4 324</td>
<td>4 073</td>
<td>4 454</td>
<td>4 644</td>
<td>4 839</td>
<td>5 040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v hl. m. Praze</td>
<td>l/s</td>
<td>253</td>
<td>276</td>
<td>229</td>
<td>218</td>
<td>218</td>
<td>218</td>
<td>218</td>
<td>218</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mimopražské odběry</td>
<td>l/s</td>
<td>197</td>
<td>215</td>
<td>210</td>
<td>214</td>
<td>218</td>
<td>218</td>
<td>223</td>
<td>224</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ÚV Želivka + odběry ze štoly</td>
<td>l/s</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>odběry přes distribuční systém Prahy</td>
<td>l/s</td>
<td>88</td>
<td>101</td>
<td>86</td>
<td>86</td>
<td>86</td>
<td>86</td>
<td>86</td>
<td>89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UV Káraný a Káranské řady</td>
<td>l/s</td>
<td>285</td>
<td>316</td>
<td>297</td>
<td>301</td>
<td>304</td>
<td>306</td>
<td>311</td>
<td>313</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mimopražské odběry celkem</td>
<td>l/s</td>
<td>5 672</td>
<td>4 791</td>
<td>4 324</td>
<td>4 073</td>
<td>4 454</td>
<td>4 644</td>
<td>4 839</td>
<td>5 040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>celkem</td>
<td>l/s</td>
<td>1 750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>celkem</td>
<td>l/s</td>
<td>3 325</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zdroje pitné vody</td>
<td>l/s</td>
<td>197</td>
<td>215</td>
<td>210</td>
<td>214</td>
<td>218</td>
<td>218</td>
<td>223</td>
<td>224</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Želivka - odběr před VDJ Jesenice</td>
<td>l/s</td>
<td>3 128</td>
<td>3 110</td>
<td>3 115</td>
<td>3 111</td>
<td>3 107</td>
<td>3 106</td>
<td>3 102</td>
<td>3 101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Želivka - odběr z VDJ Jesenice</td>
<td>l/s</td>
<td>6 875</td>
<td>5 075</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Želivka celkem</td>
<td>l/s</td>
<td>3 325</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Káraný</td>
<td>l/s</td>
<td>1 800</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Káraný</td>
<td>l/s</td>
<td>6 875</td>
<td>5 075</td>
<td></td>
<td></td>
</tr>
<tr>
<td>celkem</td>
<td>l/s</td>
<td>1 203</td>
<td>284</td>
<td>466</td>
<td>1 361</td>
<td>897</td>
<td>702</td>
<td>507</td>
<td>315</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bilance</td>
<td>l/s</td>
<td>-35</td>
<td>-230</td>
<td>-427</td>
<td>-630</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Výkon ÚV Káraný 1750 l/s lze zajistit po přípravě na omezenou dobu pouze jako mimopražský

Sweco Hydroprojekt a.s.
Bilance pro Prahu tab. V1
Vysoká varianta demografického vývoje
Standardní provoz ÚV Želivka + ÚV Káraný
Provoz - Odstávka štolového přívaděče

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rok</td>
<td></td>
</tr>
<tr>
<td>Průměrná denní potřeba vody</td>
<td></td>
</tr>
<tr>
<td>v hl. m. Praze</td>
<td>l/s</td>
<td>4 611</td>
<td>3 743</td>
<td>3 352</td>
<td>2 634</td>
<td>3 009</td>
<td>3 157</td>
<td>3 305</td>
<td>3 453</td>
<td>3 600</td>
<td>3 751</td>
<td>3 907</td>
</tr>
<tr>
<td>mimopražské odběry</td>
<td></td>
</tr>
<tr>
<td>ÚV Želivka + odběry ze štoly</td>
<td>l/s</td>
<td>0</td>
</tr>
<tr>
<td>odběry přes distribuční systém Prahy</td>
<td>l/s</td>
<td>0</td>
</tr>
<tr>
<td>ÚV Káraný a Káranské řady</td>
<td>l/s</td>
<td>68</td>
<td>78</td>
<td>67</td>
<td>67</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>69</td>
<td>69</td>
<td>69</td>
<td>69</td>
</tr>
<tr>
<td>mimopražské odběry celkem</td>
<td>l/s</td>
<td>68</td>
<td>78</td>
<td>67</td>
<td>67</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>69</td>
<td>69</td>
<td>69</td>
<td>69</td>
</tr>
<tr>
<td>celkem</td>
<td>l/s</td>
<td>4 611</td>
<td>3 743</td>
<td>3 352</td>
<td>2 634</td>
<td>3 009</td>
<td>3 157</td>
<td>3 305</td>
<td>3 453</td>
<td>3 600</td>
<td>3 751</td>
<td>3 907</td>
</tr>
</tbody>
</table>

Zdroje pitné vody

Želivka - odběr před VDJ Jesenice	l/s	0	0	0	0	0	0	0	0	0	0	0
Želivka - odběr z VDJ Jesenice	l/s	0	0	0	0	0	0	0	0	0	0	0
Želivka celkem	l/s	0	0	0	0	0	0	0	0	0	0	0
Káraný	l/s	1 400	1 400	1 400	1 400	1 400	1 400	1 400	1 400	1 400	1 400	1 400
Podolí	l/s	1 800	0	0	0	0	0	0	0	0	0	0
celkem	l/s	3 200	1 400	1 400	1 400	1 400	1 400	1 400	1 400	1 400	1 400	1 400
Bilance	l/s	-1 411	-2 343	-2 020	-1 312	-1 676	-1 824	-1 972	-2 120	-2 268	-2 420	-2 576
Bilance pro Prahu tab. V1

Vysoká varianta demografického vývoje

Standardní provoz ÚV Želivka + ÚV Káraný

Provoz - Odstávka štolového přivaděče

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kd - koeficient denní nerovnoměrnosti v Praze</td>
<td>1,23</td>
<td>1,28</td>
<td>1,29</td>
<td>1,29</td>
<td>1,29</td>
<td>1,29</td>
<td>1,29</td>
<td>1,29</td>
<td>1,29</td>
<td>1,29</td>
<td></td>
</tr>
<tr>
<td>Maximální denní potřeba vody</td>
<td></td>
</tr>
<tr>
<td>v hl. m. Praze</td>
<td>l/s</td>
<td>5 672</td>
<td>4 791</td>
<td>4 324</td>
<td>3 398</td>
<td>3 882</td>
<td>4 073</td>
<td>4 263</td>
<td>4 454</td>
<td>4 644</td>
<td>4 839</td>
</tr>
<tr>
<td>mimopražské odběry</td>
<td></td>
</tr>
<tr>
<td>ÚV Želivka + odběry ze štoly</td>
<td>l/s</td>
<td>0</td>
</tr>
<tr>
<td>odběry přes distribuční systém Prahy</td>
<td>l/s</td>
<td>0</td>
</tr>
<tr>
<td>ÚV Káraný a Káranské řady</td>
<td>l/s</td>
<td>88</td>
<td>101</td>
<td>86</td>
<td>86</td>
<td>86</td>
<td>86</td>
<td>88</td>
<td>89</td>
<td>89</td>
<td>89</td>
</tr>
<tr>
<td>mimopražské odběry celkem</td>
<td>l/s</td>
<td>88</td>
<td>101</td>
<td>86</td>
<td>86</td>
<td>86</td>
<td>86</td>
<td>88</td>
<td>89</td>
<td>89</td>
<td>89</td>
</tr>
<tr>
<td>celkem</td>
<td>l/s</td>
<td>5 672</td>
<td>4 791</td>
<td>4 412</td>
<td>3 498</td>
<td>3 968</td>
<td>4 159</td>
<td>4 350</td>
<td>4 541</td>
<td>4 732</td>
<td>4 928</td>
</tr>
</tbody>
</table>

Zdroje pitné vody												
Želivka - odběr před VDJ Jesenice	l/s	0	0	0	0	0	0	0	0	0	0	
Želivka - odběr z VDJ Jesenice	l/s	0	0	0	0	0	0	0	0	0	0	
Želivka celkem	l/s	0	0	0	0	0	0	0	0	0	0	
Káraný13	l/s	1 750	1 750	1 750	1 750	1 750	1 750	1 750	1 750	1 750	1 750	
Podolí	l/s	1 800	0	0	0	0	0	0	0	0	0	
celkem	l/s	3 550	1 750	1 750	1 750	1 750	1 750	1 750	1 750	1 750	1 750	
Bilance	l/s	-2 122	-3 041	-2 662	-1 748	-2 218	-2 409	-2 600	-2 791	-2 982	-3 178	-3 379

13 víkon ÚV Káraný 1750 l/s lze zajistit po přípravě na omezenou dobu pouze jako mimořádný

Sweco Hydroprojekt a.s.

ČÍSLO ZAKÁZKY: 11 6162 01 01

ARCHIVNÍ ČÍSLO: 005340/16/1

VERZE: ad

REVIZE: 1
Bilance pro Prahu a Středočeský kraj tab. V2

Vysoká varianta demografického vývoje

Standardní provoz ÚV Želivka + ÚV Káraný

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Průměrná denní potřeba vody</td>
<td></td>
</tr>
<tr>
<td>v hl. m. Praze</td>
<td>4 611</td>
<td>3 743</td>
<td>3 352</td>
<td>2 634</td>
<td>3 009</td>
<td>3 157</td>
<td>3 305</td>
<td>3 453</td>
<td>3 600</td>
<td>3 751</td>
<td>3 907</td>
</tr>
<tr>
<td>mimopražské odběry</td>
<td></td>
</tr>
<tr>
<td>ÚV Želivka + odběry ze štoly</td>
<td>l/s</td>
<td>153</td>
<td>167</td>
<td>163</td>
<td>166</td>
<td>169</td>
<td>170</td>
<td>173</td>
<td>174</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>odběry přes distribuční systém Prahy</td>
<td>l/s</td>
<td>280</td>
<td>323</td>
<td>364</td>
<td>423</td>
<td>492</td>
<td>572</td>
<td>675</td>
<td>791</td>
<td>932</td>
<td></td>
</tr>
<tr>
<td>ÚV Káraný a Káranské řady</td>
<td>l/s</td>
<td>68</td>
<td>78</td>
<td>67</td>
<td>67</td>
<td>67</td>
<td>67</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>69</td>
</tr>
<tr>
<td>mimopražské odběry celkem</td>
<td>l/s</td>
<td>0</td>
<td>0</td>
<td>501</td>
<td>568</td>
<td>594</td>
<td>656</td>
<td>728</td>
<td>809</td>
<td>916</td>
<td>1034</td>
</tr>
<tr>
<td>celkem</td>
<td>l/s</td>
<td>4 611</td>
<td>3 743</td>
<td>3 853</td>
<td>3 202</td>
<td>3 603</td>
<td>3 813</td>
<td>4 033</td>
<td>4 262</td>
<td>4 516</td>
<td>4 785</td>
</tr>
</tbody>
</table>

Zdroje pitné vody											
Želivka - odběr před VDJ Jesenice	l/s	153	167	163	166	169	170	173	174	175	
Želivka - odběr z VDJ Jesenice	l/s	2 697	2 683	2 687	2 684	2 681	2 830	3 027	3 176	3 175	
Želivka celkem	l/s	2 850	2 850	2 850	2 850	2 850	2 850	3 000	3 200	3 350	3 350
Káraný	l/s	1 400	1 400	1 400	1 100	1 100	1 100	1 100	1 100	1 100	1 100
Podolí	l/s	1 800	0	0	0	0	0	0	0	0	0
celkem	l/s	6 050	4 250	4 250	4 250	4 250	4 250	4 250	4 400	4 600	4 750
Bilance	l/s	1 439	507	397	748	347	137	-83	-162	-216	-335

Sweco Hydroprojekt a.s.

ČÍSLO ZAKÁZKY: 11 6162 01 01

VERZE: ad

ARCHIVNÍ ČÍSLO: 0005340/16/1

REVIZE: 1
Bilance pro Prahu a Středočeský kraj tab. V2

Vysoká varianta demografického vývoje

Standardní provoz ÚV Želivka + ÚV Káraný

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rok</td>
<td></td>
</tr>
<tr>
<td>Kd - koeficient denní nerovnoměrnosti v Praze</td>
<td>1,23</td>
<td>1,28</td>
<td>1,29</td>
<td>1,29</td>
<td>1,29</td>
<td>1,29</td>
<td>1,29</td>
<td>1,29</td>
<td>1,29</td>
<td>1,29</td>
<td>1,29</td>
</tr>
<tr>
<td>Maximální denní potřeba vody v hl. m. Praze</td>
<td>l/s</td>
<td>5,672</td>
<td>4,791</td>
<td>4,324</td>
<td>3,398</td>
<td>3,882</td>
<td>4,073</td>
<td>4,263</td>
<td>4,454</td>
<td>4,644</td>
<td>4,839</td>
</tr>
<tr>
<td>mimopražské odběry</td>
<td>l/s</td>
<td>197</td>
<td>215</td>
<td>210</td>
<td>214</td>
<td>218</td>
<td>219</td>
<td>223</td>
<td>224</td>
<td>226</td>
<td></td>
</tr>
<tr>
<td>ÚV Želivka + odběry ze štoly</td>
<td>l/s</td>
<td>361</td>
<td>417</td>
<td>470</td>
<td>546</td>
<td>635</td>
<td>738</td>
<td>871</td>
<td>1,020</td>
<td>1,030</td>
<td></td>
</tr>
<tr>
<td>ÚV Káraný a Káranské řady</td>
<td>l/s</td>
<td>88</td>
<td>101</td>
<td>86</td>
<td>86</td>
<td>86</td>
<td>88</td>
<td>89</td>
<td>89</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>mimopražské odběry celkem</td>
<td>l/s</td>
<td>0</td>
<td>0</td>
<td>646</td>
<td>733</td>
<td>766</td>
<td>847</td>
<td>939</td>
<td>1,043</td>
<td>1,182</td>
<td>1,333</td>
</tr>
<tr>
<td>celkem</td>
<td>l/s</td>
<td>5,672</td>
<td>4,791</td>
<td>4,970</td>
<td>4,131</td>
<td>4,648</td>
<td>4,919</td>
<td>5,203</td>
<td>5,498</td>
<td>5,826</td>
<td>6,172</td>
</tr>
</tbody>
</table>

Zdroje pitné vody

Želivka - odběr před VDJ Jesenice	l/s	197	215	210	214	218	219	223	224	226		
Káraný**	l/s	1,750	1,750	1,750	1,750	1,750	1,750	1,750	1,750	1,750		
Káraný	l/s	1,750	1,750	1,750	1,400	1,400	1,400	1,400	1,400	1,400		
Podolí	l/s	1,800	0	0	0	0	0	0	0	0		
celkem	l/s	6,875	5,075	5,075	5,075	5,075	5,075	5,075	5,075	5,075		
celkem	l/s	6,875	5,075	5,075	4,725	4,725	4,725	4,725	4,725	4,725		
Bilance	l/s	1,203	284	105	594	77	-194	-478	-773	-1,101	-1,447	-1,833

14 výkon ÚV Káraný 1750 l/s lze zajistit po přípravě na omezenou dobu pouze jako mimořádný
Bilance pro Prahu a Středočeský kraj tab. V2

Vysoká varianta demografického vývoje

Standardní provoz ÚV Želivka + ÚV Káraný
Provoz - Odstávka štolového přivaděče

Tabulka V22_K_Qp

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Průměrná denní potřeba vody</td>
<td>l/s</td>
<td></td>
</tr>
<tr>
<td>v hl. m. Praze</td>
<td>4 611</td>
<td>3 743</td>
<td>3 352</td>
<td>2 634</td>
<td>3 009</td>
<td>3 157</td>
<td>3 305</td>
<td>3 453</td>
<td>3 600</td>
<td>3 751</td>
<td>3 907</td>
</tr>
<tr>
<td>mimopražské odběry</td>
<td></td>
</tr>
<tr>
<td>Želivka + odběry ze štoly</td>
<td>l/s</td>
<td>0</td>
</tr>
<tr>
<td>odběry přes distribuční systém Prahy</td>
<td>l/s</td>
<td>280</td>
<td>323</td>
<td>364</td>
<td>423</td>
<td>492</td>
<td>572</td>
<td>675</td>
<td>791</td>
<td>932</td>
<td></td>
</tr>
<tr>
<td>ÚV Kárany a Káranské řady</td>
<td>l/s</td>
<td>68</td>
<td>78</td>
<td>67</td>
<td>67</td>
<td>67</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>69</td>
<td>69</td>
</tr>
<tr>
<td>mimopražské odběry celkem</td>
<td>l/s</td>
<td>0</td>
<td>0</td>
<td>348</td>
<td>401</td>
<td>431</td>
<td>490</td>
<td>559</td>
<td>639</td>
<td>743</td>
<td>860</td>
</tr>
<tr>
<td>celkem</td>
<td>l/s</td>
<td>4 611</td>
<td>3 743</td>
<td>3 700</td>
<td>3 035</td>
<td>3 440</td>
<td>3 647</td>
<td>3 864</td>
<td>4 092</td>
<td>4 343</td>
<td>4 611</td>
</tr>
</tbody>
</table>

Zdroje pitné vody

	l/s										
Želivka - odběr před VDJ Jesenice											
Želivka - odběr z VDJ Jesenice	l/s	0	0	0	0	0	0	0	0	0	0
Želivka celkem	l/s	0	0	0	0	0	0	0	0	0	0
Káraný	l/s	1 400	1 400	1 400	1 400	1 400	1 400	1 400	1 400	1 400	1 400
Podolí	l/s	1 800	0	0	0	0	0	0	0	0	0
celkem	l/s	3 200	1 400	1 400	1 400	1 400	1 400	1 400	1 400	1 400	1 400
Bilance	l/s	-1 411	-2 343	-2 300	-1 635	-2 040	-2 247	-2 464	-2 692	-2 943	-3 211

Sweco Hydroprojekt a.s.

ČÍSLO ZAKÁZKY: 11 6162 01 01
ARCHIVNÍ ČÍSLO: 005340/16/1

VERZE: ad
REVIZE: 1
Bilance pro Prahu a Středočeský kraj tab. V2

Vysoká varianta demografického vývoje

Standardní provoz ÚV Želivka + ÚV Káraný

Provoz - Odstávka štolového přivaděče

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rok</td>
<td></td>
</tr>
<tr>
<td>Kd - koeficient denní nerovnoměrnosti v Praze</td>
<td>1,23</td>
<td>1,28</td>
<td>1,29</td>
<td>1,29</td>
<td>1,29</td>
<td>1,29</td>
<td>1,29</td>
<td>1,29</td>
<td>1,29</td>
<td>1,29</td>
<td>1,29</td>
</tr>
<tr>
<td>Maximální denní potřeba vody</td>
<td></td>
</tr>
<tr>
<td>v hl. m. Praze</td>
<td>l/s</td>
<td>5 672</td>
<td>4 791</td>
<td>4 324</td>
<td>3 882</td>
<td>4 073</td>
<td>4 263</td>
<td>4 454</td>
<td>4 644</td>
<td>4 839</td>
<td>5 040</td>
</tr>
<tr>
<td>mimopražské odběry</td>
<td></td>
</tr>
<tr>
<td>ÚV Želivka + odběry ze štoly</td>
<td>l/s</td>
<td>0</td>
</tr>
<tr>
<td>odběry přes distribuční systém Prahy</td>
<td>l/s</td>
<td>361</td>
<td>417</td>
<td>470</td>
<td>546</td>
<td>635</td>
<td>738</td>
<td>871</td>
<td>1020</td>
<td>1203</td>
<td>1203</td>
</tr>
<tr>
<td>ÚV Kárany a Káranské řady</td>
<td>l/s</td>
<td>88</td>
<td>101</td>
<td>86</td>
<td>86</td>
<td>86</td>
<td>88</td>
<td>89</td>
<td>89</td>
<td>89</td>
<td>89</td>
</tr>
<tr>
<td>mimopražské odběry celkem</td>
<td>l/s</td>
<td>0</td>
<td>0</td>
<td>449</td>
<td>517</td>
<td>556</td>
<td>633</td>
<td>721</td>
<td>824</td>
<td>959</td>
<td>1109</td>
</tr>
<tr>
<td>celkem</td>
<td>l/s</td>
<td>5 672</td>
<td>4 791</td>
<td>4 773</td>
<td>3 915</td>
<td>4 438</td>
<td>4 705</td>
<td>4 985</td>
<td>5 279</td>
<td>5 603</td>
<td>5 948</td>
</tr>
<tr>
<td>Zdroje pitné vody</td>
<td></td>
</tr>
<tr>
<td>Želivka - odběr před VDJ Jesenice</td>
<td>l/s</td>
<td>0</td>
</tr>
<tr>
<td>Želivka - odběr z VDJ Jesenice</td>
<td>l/s</td>
<td>0</td>
</tr>
<tr>
<td>Želivka celkem</td>
<td>l/s</td>
<td>0</td>
</tr>
<tr>
<td>Káraný</td>
<td>l/s</td>
<td>1 750</td>
</tr>
<tr>
<td>Podolí</td>
<td>l/s</td>
<td>1 800</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>celkem</td>
<td>l/s</td>
<td>3 550</td>
<td>1 750</td>
</tr>
<tr>
<td>Bilance</td>
<td>l/s</td>
<td>-2 122</td>
<td>-3 041</td>
<td>-3 023</td>
<td>-2 165</td>
<td>-2 688</td>
<td>-2 955</td>
<td>-3 235</td>
<td>-3 629</td>
<td>-3 853</td>
<td>-4 198</td>
</tr>
</tbody>
</table>

15 výkon ÚV Káraný 1750 l/s lze zajistit po přípravě na omezenou dobu pouze jako mimořádný

Sweco Hydroprojekt a.s.

ČÍSLO ZAKÁZKY: 11 6162 01 01
ARCHIVNÍ ČÍSLO: 005340/16/1
VERZIE: ad
REVIZE: 1
Bilance pro Prahu tab. S1

Střední varianty demografického vývoje
Standardní provoz ÚV Želivka + ÚV Káraný

<table>
<thead>
<tr>
<th>Tabulka S10_ZK_Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Průměrná denní potřeba vody</td>
</tr>
<tr>
<td>v hl. m. Praze</td>
</tr>
<tr>
<td>mimopražské odběry</td>
</tr>
<tr>
<td>ÚV Želivka + odběry ze štoly</td>
</tr>
<tr>
<td>odběry přes distribuční systém Prahy</td>
</tr>
<tr>
<td>ÚV Káraný a Káranské řady</td>
</tr>
<tr>
<td>mimopražské odběry celkem</td>
</tr>
<tr>
<td>celkem</td>
</tr>
</tbody>
</table>

Zdroje pitné vody

Želivka - odběr před VDJ Jesenice	l/s	153	167	163	166	169	170	173	174	175	
Želivka - odběr z VDJ Jesenice	l/s	2 697	2 683	2 687	2 684	2 681	2 680	2 677	2 676	2 675	
Želivka celkem	l/s	2 850	2 850	2 850	2 850	2 850	2 850	2 850	2 850	2 850	2 850
Káraný	l/s	1 400	1 400	1 100	1 100	1 100	1 100	1 100	1 100	1 100	1 100
Podolí	l/s	1 800	0	0	0	0	0	0	0	0	
celkem	l/s	6 050	4 250	4 250	3 950	3 950	3 950	3 950	3 950	3 950	3 950

Bilance

| Bilance | l/s | 1 439 | 507 | 677 | 493 | 611 | 490 | 379 | 277 | 174 | 72 | -31 |
Bilance pro Prahu tab. S1

<table>
<thead>
<tr>
<th>Střední varianta demografického vývoje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provoz - Odstávka štolového přivaděče</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabulka S13_K_Q_d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kd - koeficient denní nerovnoměrnosti v Praze</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximální denní potřeba vody</th>
</tr>
</thead>
<tbody>
<tr>
<td>v hl. m. Praze</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>mimopražské odběry</th>
</tr>
</thead>
<tbody>
<tr>
<td>ÚV Želivka + odběry ze štoly</td>
</tr>
<tr>
<td>odběry přes distribuční systém Prahy</td>
</tr>
<tr>
<td>ÚV Káraný a Káranské řady</td>
</tr>
<tr>
<td>mimopražské odběry celkem</td>
</tr>
<tr>
<td>celkem</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zdroje pitné vody</th>
</tr>
</thead>
<tbody>
<tr>
<td>Želivka - odběr před VDJ Jesenice</td>
</tr>
<tr>
<td>Želivka - odběr z VDJ Jesenice</td>
</tr>
<tr>
<td>Želivka celkem</td>
</tr>
<tr>
<td>Káraný</td>
</tr>
<tr>
<td>Podolí</td>
</tr>
<tr>
<td>celkem</td>
</tr>
</tbody>
</table>

16 výkon ÚV Káraný 1750 l/s lze zajistit po přípravě na omezenou dobu pouze jako mimopražský
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>v hl. m. Praze</td>
<td>l/s</td>
<td>4 611</td>
<td>3 743</td>
<td>3 352</td>
<td>3 036</td>
<td>2 959</td>
<td>3 050</td>
<td>3 133</td>
<td>3 211</td>
<td>3 287</td>
<td>3 364</td>
</tr>
<tr>
<td>mimopražské odběry</td>
<td>l/s</td>
<td>0</td>
<td>0</td>
<td>501</td>
<td>568</td>
<td>594</td>
<td>656</td>
<td>728</td>
<td>809</td>
<td>916</td>
<td>1034</td>
</tr>
<tr>
<td>ÚV Želivka + odběry ze štoly</td>
<td>l/s</td>
<td>153</td>
<td>167</td>
<td>163</td>
<td>166</td>
<td>169</td>
<td>170</td>
<td>173</td>
<td>174</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>odběry přes distribuční systém Prahy</td>
<td>l/s</td>
<td>280</td>
<td>323</td>
<td>364</td>
<td>423</td>
<td>492</td>
<td>572</td>
<td>675</td>
<td>791</td>
<td>932</td>
<td></td>
</tr>
<tr>
<td>ÚV Káraný a Káranské řady</td>
<td>l/s</td>
<td>68</td>
<td>78</td>
<td>67</td>
<td>67</td>
<td>67</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>mimopražské odběry celkem</td>
<td>l/s</td>
<td>0</td>
<td>0</td>
<td>501</td>
<td>568</td>
<td>594</td>
<td>656</td>
<td>728</td>
<td>809</td>
<td>916</td>
<td>1034</td>
</tr>
<tr>
<td>celkem</td>
<td>l/s</td>
<td>4 611</td>
<td>3 743</td>
<td>3 352</td>
<td>3 036</td>
<td>2 959</td>
<td>3 050</td>
<td>3 133</td>
<td>3 211</td>
<td>3 287</td>
<td>3 364</td>
</tr>
</tbody>
</table>

Zdroje pitné vody

Želivka - odběr před VDJ Jesenice	l/s	153	167	163	166	169	170	173	174	175		
Želivka - odběr z VDJ Jesenice	l/s	2 697	2 683	2 687	2 684	2 681	2 680	2 677	2 926	3 175		
Želivka celkem	l/s	2 850	2 850	2 850	2 850	2 850	2 850	2 850	2 850	3 100	3 350	
Káraný	l/s	1 400	1 400	1 400	1 100	1 100	1 100	1 100	1 100	1 100	1 100	
Podolí	l/s	1 800	0	0	0	0	0	0	0	0		
celkem	l/s	6 050	4 250	4 250	3 950	3 950	3 950	3 950	3 950	4 200	4 450	
Bilance	l/s	1 439	507	397	346	397	244	89	-70	-253	-198	-169
Bilance pro Prahu a Středočeský kraj tab. S2

Střední varianta demografického vývoje

Standardní provoz ÚV Želivka + ÚV Káraný

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kd - koeficient denní nerovnoměrnosti v Praze</td>
<td>1,23</td>
<td>1,28</td>
<td>1,29</td>
<td>1,29</td>
<td>1,29</td>
<td>1,29</td>
<td>1,29</td>
<td>1,29</td>
<td>1,29</td>
<td>1,29</td>
<td>1,29</td>
</tr>
</tbody>
</table>

Maximální denní potřeba vody

V hl. m. Praze

| l/s | 5 672 | 4 791 | 4 324 | 3 916 | 3 817 | 3 935 | 4 042 | 4 142 | 4 240 | 4 340 | 4 441 |

<table>
<thead>
<tr>
<th>mimopražské odběry</th>
</tr>
</thead>
<tbody>
<tr>
<td>ÚV Želivka + odběry ze štoly</td>
</tr>
<tr>
<td>odběry přes distribuční systém Prahy</td>
</tr>
<tr>
<td>ÚV Káraný a Káranské řady</td>
</tr>
<tr>
<td>mimopražské odběry celkem</td>
</tr>
<tr>
<td>celkem</td>
</tr>
</tbody>
</table>

Zdroje pitné vody

<table>
<thead>
<tr>
<th>Zdroje pitné vody</th>
</tr>
</thead>
<tbody>
<tr>
<td>Želivka - odběr před VDJ Jesenice</td>
</tr>
<tr>
<td>Želivka - odběr z VDJ Jesenice</td>
</tr>
<tr>
<td>Želivka celkem</td>
</tr>
<tr>
<td>Káraný</td>
</tr>
<tr>
<td>Káraný</td>
</tr>
<tr>
<td>Podolí</td>
</tr>
<tr>
<td>celkem</td>
</tr>
<tr>
<td>celkem</td>
</tr>
<tr>
<td>Bilance</td>
</tr>
</tbody>
</table>

| Bilance | l/s | 1 203 | 284 | 105 | 76 | 142 | -56 | -256 | -461 | -697 | -948 | -1 234 |

17 výkon ÚV Káraný 1750 l/s lze zajistit po přípravě na omezenou dobu pouze jako mimořádný
Bilance pro Prahu a Středočeský kraj tab. S2

Střední varianta demografického vývoje

Provoz - Odstávka štolového přivaděče

Tabulka S22_K_Qp

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Průměrná denní potřeba vody</td>
<td></td>
</tr>
<tr>
<td>v hl. m. Praze</td>
<td>l/s</td>
<td>4 611</td>
<td>3 743</td>
<td>3 352</td>
<td>3 036</td>
<td>2 959</td>
<td>3 050</td>
<td>3 133</td>
<td>3 211</td>
<td>3 287</td>
<td>3 364</td>
</tr>
<tr>
<td>mimopražské odběry</td>
<td></td>
</tr>
<tr>
<td>ÚV Želivka + odběry ze štoly</td>
<td>l/s</td>
<td>280</td>
<td>323</td>
<td>364</td>
<td>423</td>
<td>492</td>
<td>572</td>
<td>675</td>
<td>791</td>
<td>932</td>
<td></td>
</tr>
<tr>
<td>odběry přes distribuční systém Prahy</td>
<td>l/s</td>
<td>68</td>
<td>78</td>
<td>67</td>
<td>67</td>
<td>67</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>mimopražské odběry celkem</td>
<td>l/s</td>
<td>0</td>
<td>0</td>
<td>348</td>
<td>401</td>
<td>431</td>
<td>490</td>
<td>559</td>
<td>639</td>
<td>743</td>
<td>860</td>
</tr>
<tr>
<td>celkem</td>
<td>l/s</td>
<td>4 611</td>
<td>3 743</td>
<td>3 700</td>
<td>3 437</td>
<td>3 390</td>
<td>3 540</td>
<td>3 692</td>
<td>3 850</td>
<td>4 030</td>
<td>4 224</td>
</tr>
</tbody>
</table>

Zdroje pitné vody

Želivka - odběr před VDJ Jesenice	l/s											
Želivka - odběr z VDJ Jesenice	l/s											
Želivka celkem	l/s											
Káraný	l/s	1 400	1 400	1 400	1 400	1 400	1 400	1 400	1 400	1 400	1 400	
Podolí	l/s	1 800	0	0	0	0	0	0	0	0	0	
celkem	l/s	3 200	1 400	1 400	1 400	1 400	1 400	1 400	1 400	1 400	1 400	
Bilance	l/s	-1 411	-2 343	-2 300	-2 037	-1 990	-2 140	-2 292	-2 450	-2 630	-2 824	-3 044
Bilance pro Prahu a Středočeský kraj tab. S2

Střední varianta demografického vývoje

Provoz - Odstávka štolového přivaděče

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kd - koeficient denní nerovnoměrnosti v Praze</td>
<td>1,23</td>
<td>1,28</td>
<td>1,29</td>
<td>1,29</td>
<td>1,29</td>
<td>1,29</td>
<td>1,29</td>
<td>1,29</td>
<td>1,29</td>
<td>1,29</td>
<td>1,29</td>
</tr>
<tr>
<td>Maximální denní potřeba vody</td>
<td></td>
</tr>
<tr>
<td>v hl. m. Praze</td>
<td>l/s</td>
<td>5 672</td>
<td>4 791</td>
<td>4 324</td>
<td>3 916</td>
<td>3 817</td>
<td>3 935</td>
<td>4 042</td>
<td>4 142</td>
<td>4 240</td>
<td>4 340</td>
</tr>
<tr>
<td>mimopražské odběry</td>
<td></td>
</tr>
<tr>
<td>ÚV Želivka + odběry ze štoly</td>
<td>l/s</td>
<td>0</td>
</tr>
<tr>
<td>odběry přes distribuční systém Prahy</td>
<td>l/s</td>
<td>361</td>
<td>417</td>
<td>470</td>
<td>546</td>
<td>635</td>
<td>738</td>
<td>871</td>
<td>1020</td>
<td>1203</td>
<td></td>
</tr>
<tr>
<td>ÚV Káraný a Káranské řady</td>
<td>l/s</td>
<td>88</td>
<td>101</td>
<td>86</td>
<td>86</td>
<td>86</td>
<td>86</td>
<td>88</td>
<td>89</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>mimopražské odběry celkem</td>
<td>l/s</td>
<td>0</td>
<td>0</td>
<td>449</td>
<td>517</td>
<td>556</td>
<td>633</td>
<td>721</td>
<td>824</td>
<td>959</td>
<td>1109</td>
</tr>
<tr>
<td>celkem</td>
<td>l/s</td>
<td>5 672</td>
<td>4 791</td>
<td>4 773</td>
<td>4 434</td>
<td>4 373</td>
<td>4 567</td>
<td>4 763</td>
<td>4 966</td>
<td>5 199</td>
<td>5 448</td>
</tr>
</tbody>
</table>

Zdroje pitné vody

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Želivka - odběr před VDJ Jesenice</td>
<td>l/s</td>
<td>0</td>
</tr>
<tr>
<td>Želivka - odběr z VDJ Jesenice</td>
<td>l/s</td>
<td>0</td>
</tr>
<tr>
<td>Želivka celkem</td>
<td>l/s</td>
<td>0</td>
</tr>
<tr>
<td>Káraný</td>
<td>l/s</td>
<td>1 750</td>
</tr>
<tr>
<td>Podolí</td>
<td>l/s</td>
<td>1 800</td>
<td>0</td>
</tr>
<tr>
<td>celkem</td>
<td>l/s</td>
<td>3 550</td>
<td>1 750</td>
</tr>
<tr>
<td>Bilance</td>
<td>l/s</td>
<td>-2 122</td>
<td>-3 041</td>
<td>-3 023</td>
<td>-2 684</td>
<td>-2 623</td>
<td>-2 817</td>
<td>-3 013</td>
<td>-3 216</td>
<td>-3 449</td>
<td>-3 698</td>
<td>-3 983</td>
</tr>
</tbody>
</table>

Sweco Hydprojekt a.s.

ČÍSLO ZÁKÁZKY: 11 6162 01 01

ARCHIVNÍ ČÍSLO: 005340/16/1

VERZE: ad

REVIZE: 1
<table>
<thead>
<tr>
<th>Aktualizace PRVKUK hl.m. Prahy</th>
<th>A.2 Popis nadobecních systémů vodovodů a kanalizaci v kraji</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRVKUK</td>
<td></td>
</tr>
</tbody>
</table>

| AKTUALIZACE k roku 2007 - psáno modře |
| AKTUALIZACE k roku 2010 - psáno červeně|
| AKTUALIZACE k roku 2016 – psáno zeleně |
4.2 VODOVODY – SOUHRN SOUČASNÉHO STAVU

Zásadní změnu v systému zásobování pitnou vodou přinesl počátek 20. století. V roce 1914 byla uvedena do provozu úpravna vody v Káraném. Opatrná rekonstrukce počátkem 20. století, která byla nutná pro modernizaci vodovodní sítě, byla realizována v letech 1920–1930. Doprava vody na území Prahy je vzhledem ke složité konfiguraci terénu velmi obtížná, protože je třeba zásobit území od nadmořské výšky 180 m n. m. do 440 m n. m. Postupně se tak vytvořil velký počet tlakových a zásobních pasm, která jsou zásobena buď gravitačně z jednotlivých vodárenských zdrojů nebo čerpáním z čerpacích stanic.

Vzhledem k tomu, že je v současnosti v hl. m. Praze zabezpečováno zásobení téměř 100 % trvale bydličích obyvatel, je možné považovat z globálního pohledu systém zásobení v hl. m. Prahy za dokončený. Bude však třeba do budoucnosti realizovat řadu opatření pro zvýšení zabezpečenosti dodávky vody do jednotlivých částí města a při různých havarijních situacích jako náhradní zdroj. To těchto důvodů je pravidelně dvakrát ročně ověřováno po dobu cca 2 týdnů její provozuschopnost.

V současnosti je zabezpečena dodávka vody z úpravny vody Želivka do západních a východních obvodů hl. m. Prahy, ale i do centra města. Po povodnách v roce 2002 byla uvedena do tzv. „studené rezervy” úpravna vody Podolí. To ve skutečnosti znamenalo její vyřazení z trvalého provozu. Předpokládá se, že bude vyžadovat mnoho zavádění nových zdrojů a modernizace existujících. K modernizaci a rozšiřování vodovodní sítě je třeba v budoucnu realizovat řadu opatření pro zajištění závazných provozních podmínek.
4.3 ZDROJE PITNÉ VODY

4.3.1 SOUHRNné INFORMACE

V padesátých a šedesátých letech byl nárůst potřeby vody řešen postupným zvyšováním kapacity úpravny vody Podolí, kde byl dostavěn první separační stupeň, a úpravny vody Kárany, kde byla doplněna umělá infiltrace.

Výstavba zdrojů byla dokončena v sedmdesátých a osmdesátých letech postupnou výstavbou úpravny vody Želivka, kterou byl, i když se zpožděním, řešen velmi rychlý nárůst potřeby vody ve středočeské aglomeraci v tomto období.

Koncem osmdesátých let byla situace v zásobování středočeské aglomerace kritická. Spotřeba vody kulinovála, všechny úpravny vody byly využívány na hranici svých možností, vodárenská nádrž Želivka nebyla dostatečně naplněna a neumožňovala plný odběr surové vody. Úpravna vody Podolí byla v havarijním stavu a hrozila ztráta tohoto zdroje.

Začátkem devadesátých let nastal velký pokles potřeby vody a navrhovaná opatření 18 nejsou v současné době aktuální. (Je zažádáno o zrušení územního rozhodnutí na úpravnu vody Praha – jih.)

Rekonstrukce úpravny vody Podolí byla dokončena v polovině roku 2001, nyní je ve studené rezervě.

Z dlouhodobého hlediska při nárůstu obyvatel v hl. m. Praze a zvyšujících se požadavků na odběr a kvalitu pitné vody ve Středočeském kraji doporučujeme zvažit uvedení ÚV Podolí do trvalého provozu a posoudit podmínky pro rozšíření umělé infiltrace v ÚV Kárany. Pro trvalý provoz ÚV Podolí je třeba řešit kvalitu upravené vody doplněním o třetí stupeň, aby upravená pitná voda spívala hygienické limity.

18. [Elements enclosed in brackets indicate notes or additional information.]
4.3.2 POPIS ZDROJŮ PITNÉ VODY

4.3.3 ZDROJ JIZERA, PODZEMNÍ ZDROJE

4.3.3.1 POPIS ZDROJE

Podzemní pitná voda je v Káraném získávána ze tří systémů:

Přirozená infiltrace je v provozu od roku 1914. Jizerská voda infiltruje dnem i břehem do okolních štěrkopískových náplavů, kde je ve vzdálenosti 250 m od řeky jímána ve směsi s podzemní hřídelovou vodou. Voda je odebírána z několika řad vrtních studní propojených násoskou.

Břehová infiltrace – jizerská voda infiltruje dnem i břehem do okolních štěrkopískových náplavů, kde je ve vzdálenosti 200-250 m od řeky Jizery jímána ve směsi s přirozenou podzemní vodou. Děje se tak prostřednictvím cca 700 vrtních studní. Řady studní jsou propojeny násoskou a voda je dále doprovázena pomocí čerpacích stanic a gravitačního svodného řadu do hlavní čerpací stanice v Káraném. Kapacita tohoto zdroje je 800-900 l/s.

Umělá infiltrace je v provozu od roku 1968. Surová jizerská voda je po prosté filtraci na pískových rychlofiltrech přečerpávána do otevřených vsakovacích nádrží, které jsou situovány do oblasti štěrkopískových náplavů o mocnosti až 20 metrů.

Jizera, která je zdrojem pro umělou i břehovou infiltraci je vodárenským tokem a má tyto parametry:

Umělá infiltrace surová jizerská voda je dopravena do úpravny vody Sojovice, kde je přefiltrována na pískových rychlofiltrech s filtračním pískem zrnitosti 0,7-2 mm. Filtrace probíhá na 24 filtrech umístěných ve 2 filtračních halách. Plocha každého filtru je 60 m², celková filtrační plocha je 1440 m². Výška filtrační náplně je 1,3 m. Následně je přečerpána do vsakovacích nádrží s přirozeným pískovým dnem. Vsaková voda prochází přes tento přirozený filtr do okolních štěrkopískových náplavů, intenzivně obohacuje přirozené zásoby podzemní vody a kontaktem s geologickými vrstvami získává vlastnosti podzemní vody.

Ve vzdálenosti 200 m od vsakovacích nádrží je po 30-40 dnech zdržení v podzemí voda jímána soustavou vrtních studní a horizontálními sběrači jako kvalitní podzemní voda. Soustavou čerpacích stanic je voda přečerpána do hlavní čerpací stanice v Káraném. Kapacita je ca 900 l/s.

Odběr povrchové vody je povolen na základě Rozhodnutí vydaného Magistrátem města Mladá Boleslav-odbor životního prostředí pod č. j.: ŽP.231.2-26328/2006 z 1.11.2006.

Jizera, která je zdrojem pro umělou i břehovou infiltraci je vodárenským tokem a má tyto parametry:

<table>
<thead>
<tr>
<th>Příznaky</th>
<th>hodnota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Délka toku</td>
<td>164 km</td>
</tr>
<tr>
<td>Plocha povodí</td>
<td>2200 km²</td>
</tr>
<tr>
<td>Průměrné srážky</td>
<td>580 mm/rok</td>
</tr>
<tr>
<td>Průměrný průtok</td>
<td>7 m³/s</td>
</tr>
<tr>
<td>Q<sub>355</sub></td>
<td>5,1 m³/s</td>
</tr>
<tr>
<td>povolený odběr:</td>
<td>1046 l/s</td>
</tr>
<tr>
<td>maximální povolený odběr:</td>
<td>1830 l/s</td>
</tr>
</tbody>
</table>

Voda ze všech 3 technologií je v hlavní čerpací stanici v Káraném smíchána, hygienicky zabezpečena chlorem a hlavním čerpadlem dopravena výtlačnými řady do vodojemů Flora a Ládví.

Souhrn základních dat o vodárně Káraný je uveden dále.

Zdroj artéské vody je v provozu od roku 1914. Jde o zdroj mimořádně kvalitní vody, neovlivněné lidskou činností, jímána ze sedmi artéských vrtů z hloubek 60 – 80 metrů, její složení po jednoduché úpravě (odželeznění) odpovídá požadavkům jakosti na vodu pro přípravu kojenecké stravy. Kapacita zdroje 70 l/s. Část podzemní artéské vody je využívána jako balená pitná voda.

4.3.3.1.1 Úpravna vody Káraný

Povrchová voda pro úpravu vody Káraný je odebírána na základě Rozhodnutí vydaného Magistrátem města Mladá Boleslav-odbor životního prostředí, jako věcně příslušný podle ustanovení §104 odst 2, písm c) a ustanovení §106 zákona 254/2001 Sb., o vodách a o změně některých zákonů, ve znění pozdějších předpisů a jako místně příslušný vodoprávní úřad podle ustanovení §11 zákona č. 500/2004 Sb., správní řád pozdějších o povolení podle ustanovení § 8 odst. 1 písm.a) bod 1, zákona č. 254/2001 Sb o vodách a o změně některých zákonů (vodní zákon), ve znění pozdějších předpisů k nakládání s povrchovými vodami.
Aktualizace PRVKUK hl.m. Prahy

AKTUALIZACE k roku 2007 - psáno modře
AKTUALIZACE k roku 2010 - psáno červeně
AKTUALIZACE k roku 2016 – psáno zeleně

v obci Skorkov v katastrálním území Otradovice, na pozemku parc.Č. 289/2, na levém břehu vodního toku Jizery v č.h.p. 1-05-03-015, v říčním km 4,720 v rozsahu:

povolený odběr: 1046 l/s
maximální povolený odběr: 1830 l/s
maximální měsíční povolený odběr: 3500 tis. m³/měs
roční povolený odběr: 33000 tis. m³/rok
počet měsíců v roce, kdy se odebírá: 12

Výkon úpravny vody
maximální: 1900 l/s
průměrný: 1750 l/s
minimální: 600 l/s

Úpravna vody Káraný je první úpravna vody, jejíž výstavbou byla zabezpečena pro Prahu kvalitní a zdravotně nezávadná pitná voda. Byla vystavěna na základě rozhodnutí císaře Františka Josefa I, který tak chtěl vyřešit problém zdravotních potíží a epidemií, dlouhodobě zatěžujících pražské obyvatele, které byly způsobeny závadnou vodou z dosavadních zdrojů. Výstavba úpravny vody byla dokončena v roce 1914 a ve stejném roce byla uvedena do provozu.

Výběr káranské vodárenské lokality na soutoku Labe a Jizery, vycházel z velmi vhodného hydrogeologického uspořádání zdejší krajiny, bohaté na čtvrtohorní štěrkopískové náplavy. Do této oblasti přitéká v hlubokém podzemí velmi kvalitní podzemní voda, ze severní části geologického útvaru "České křídy". Po dlouhé období, od svého zprovoznění, byla úpravna vody v Káraném rozhodujícím zdrojem pitné vody pro Prahu.

V sedmdesátých letech pak byla vystavěna odželezovna pro podzemní vodu z artézského a polabského křídla.

Technologická linka úpravny vody se skládá z několika částí v závislosti na zdroji, ze kterého je odebírána surová voda. Podzemní voda z přirozené infiltrace není upravována. Po jímání je doprovázena do akumulace hlavní čerpač stanice Káraný. Surovou vodu, kterou je nutno upravovat je nutno rozdělit na vodu z artézského a polabského křídla včetně vody z Jizery po prosté filtraci upravované v odželezovně a vodu z Jizery s technologickou linkou úpravy vody – umělá infiltrace.
Aktualizace PRVKUK hl.m. Prahy

A.2 Popis nadobecných systémů vodovodů a kanalizací v kraji

AKTUALIZACE k roku 2007 - psáno modře
AKTUALIZACE k roku 2010 - psáno červeně
AKTUALIZACE k roku 2016 – psáno zeleně

Odželezovna:

Artéská voda a část povrchové o kapacitním výkonu 50 180 l/s
Artéská voda : .. 70 l/s
 • provzdušňování
Povrchová voda : .. 110 l/s
 • písková filtrace (společná s umělou infiltrací)
 • možnost alkalizace
 • míchání obou druhů vody v reakční nádrži
 • písková filtrace

Artéská voda určená pro balenou vodu : 10 l/s
 • provzdušňování
 • filtrace
 • UV záření

Umělá infiltrace – Sojovice: 900 l/s
 • odběr surové vody s čerpací stanicí
 • úpravna vody Sojovice:
 písková filtrace
 počet filtrů 24 ks
 plocha filtru 60 m²
 možnost dávkování algicidů
 • pomalá filtrace biologickou blánou na dnech vsakovacích nádrží
 • přirozená filtrace v horninových vrstvách

Veškerá dodávaná voda (s výjimkou vody balené)
 • hygienické zabezpečení chlórem

Hlavní čerpací stanice v Káraném dopravuje vyrobenou vodu po hygienickém zabezpečení chlórem do zásobních vodojemů v Praze. Doprava je třemi výtlačnými řadami:
 • starými káranskými řadami I a II řadou do vodojemu Flora
 • novým káranským řadou III řadou do vodojemu Ládví I.

Podmínky pro zvýšení kapacity zdroje

Velkou výhodou úpravny vody v Káraném je využívání podzemní vody k výrobě pitné vody. Úpravna vody v Káraném, je jednou z mála významných evropských úpraven vody využívající podzemní vodu přirozenou infiltrací z vodárenského toku Jizery, která si dlouhodobě (již 85 let) zachovala původní kapacitu i jakost jímané a distribuované pitné vody. Kapacitu podzemní vody z břehové infiltrace, podzemní vody jímané artézským a polabským křídlem lze považovat za vyčerpanou.

Podmínkou zvýšení kapacity umělé infiltrace a zlepšení provozu by byla dostavba úpravny vody Sojovice, tj. doplnění stávající prosté filtrace o oxidaci, koagulaci a sedimentaci včetně nutného rozšíření kalového hospodářství. Toto řešení by umožnilo celoroční provoz umělé infiltrace bez odstavení provozu při okolových stavech s možností snížení časového intervalu čištění vsakovacích van. Zvýšení kapacity lze odhadnout do 150 l/s. Toto množství vody je z hlediska celkového výkonu Káraného zanedbatelné. S ohledem na snížení celkové potřeby vody v pražské aglomeraci se dostavba nedoporučuje.

S ohledem na zvýšující se počet obyvatel v pražské a středočeské aglomeraci je třeba zvážit zvýšení kapacity podzemní vody z břehové infiltrace

Sweco Hydroprojekt a.s.
Faktory ovlivňující snížení kapacity zdroje

Vedle možného lokálního ohrožení kapacity jednotlivých jímacích zařízení přirozené infiltrace lze pak uvažovat možnost snížení kapacity u umělé infiltrace vlivem jakosti vody v Jizere respektive ohrožení jakosti vlivem znečištění podzemních vod z Milovic.

Snížení kapacity přirozené infiltrace na základě omezení jímání z jednotlivých vrtů nelze předpokládat a provoz z hlediska kapacity a jakosti lze v současné době považovat za stabilizovaný.

Možné snížení provozního výkonu umělé infiltrace souvisí s jakostí vody v Jizeře. Jizera je tok bez zdrží a tedy s velmi proměnnou kvalitou vody. Při deštích v povodí vzrůstá zákal, který dosavadní předuprava prostou filtrací nezvládá a odběr vody pro umělou infiltraci se proto odstavuje. Zákaly obvykle netrvají dlouho a čerpání upravené vody z podzemí se nemusí omezovat, protože ohromně zvědělé horizonty vytvářejí dostatečnou kapacitu. Tento provoz odpovídá původní konceptu projektu umělé infiltrace. Omezení odběrů z Jizery ovlivňuje výkon umělé infiltrace a tím i výkon Káraného. Snížení výkonu vlivem zákalu je v současné době považován za stabilizovaný.

Dalším provozním problémem je vysoký obsah mikrobiálního znečištění a živin v surové vodě.

4.3.3.2 ZDROJ VLTAVA

4.3.3.2.1 Popis zdroje

Zdrojem surové vody pro úpravu vody Podolí je řeka Vltava. Odběr surové vody je situován na Veslařském ostrově u úpravny vody. Odběr surové vody je zajišťován břehovým jímacím objektem, jímána je převážně voda z horních horizontů řeky.

Obrovskou výhodou Vltavy, jako zdroje surové vody, je především její, z hlediska vodárenského využití, téměř neomezená kapacita. Na rozdíl od úpravny vody Želivka, kde mělo poměrně dlouhé období negativní dopady na zajištění potřebné zásoby vody v podzemní nádrži, je Vltava jen minimálně ovlivňována klimatickými výkyvy.

Nevýhodou je skutečnost, že Vltava jako jeden z největších českých toků, který má všechny přirozené vody, vlivem většího oblastí jižních a středních Čech.

Vltava má tyto parametry:

- Délka toku: 380 km
- Plocha povodí: 26 800 km²
- Průměrné srážky: 520 mm/rok
- Průměrný průtok: 147 m³/s
- Q₃₅₅: 25,9 m³/s

V minulosti bylo zvažováno vybudování přivaděče surové vody pro ÚV Podolí z Modřan. Stavební uzavírka byla pro tento případ zrušena [P 37].
4.3.3.2 Úpravna vody Podolí

Voda je odebrána na základě Rozhodnutí Odboru ochrany prostředí Magistrátu hlavního města Prahy, jako věcně příslušného vodoprávního úřadu podle ustanovení §31 odst.2 zákona č.131/2000 Sb., o hlavním městě Praze, ve znění pozdějších předpisů a podle ustanovení § 106 zákona č.254/2001 Sb. o vodách a o změně některých zákonů ve znění pozdějších předpisů a místně příslušný dle ust § 11zákona č.500/2004 Sb. správní řád, ve znění pozdějších předpisů k povolení dle ust.§ 8 odst.1 písm. a) zákona č. 254/2001 Sb. o vodách a o změně některých zákonů ve znění pozdějších předpisů k odběru povrchových vod z řeky Vltavy (číslo hydrologického pořadí 1-12-01-013) v říčním kilometru 56,3 stávajícím odběrným objektem umístěným na pozemcích č. parc. 2037/6, 2037/7, k.ú. Podolí v Praze 4, vydaného dne 22.11.2006 pod SZn.: S-MHMP 363164/2006/OOP-1/R-300/Sh. Vzhledem k současně nastavenému režimu fungování úpravny vody jako záložní zdroj pro úpravu povrchové vody na vodu pitnou (od léta r.2002) je úpravna v provozu 4x ročně na 2 dny v rámci tzv. kontrolních provozů a upravená voda není distribuována do distribuční sítě. za účelem úpravy povrchové vody na vodu pitnou v množství:

<table>
<thead>
<tr>
<th>Hodnoty v době trvalého provozu úpravny:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>průměrně čerpané množství</td>
<td>2640 l/s</td>
</tr>
<tr>
<td>maximálně čerpané množství</td>
<td>3000 l/s</td>
</tr>
<tr>
<td>měsíční množství</td>
<td>8035200 m³/měs,</td>
</tr>
<tr>
<td>roční množství</td>
<td>83256000 m³/rok</td>
</tr>
</tbody>
</table>

Hodnoty v době kontrolních provozů (od.r 2002):

| Průměrně čerpané množství: | 250 l/s |
| roční množství odebrané vody v r. 2010 | 120271 m³/rok |
| (4 x ročně proveden kontrolní provoz bez dodávky vody do sítě) pro provoz úpravny vody v Praze 4 – Podolí. |

Na počátku roku 2011 nabyla právní moci rozhodnutí Magistrátu hl. m. Prahy a Ministerstva životního prostředí, upravující II. ochranné pásmo vodního zdroje Praha – Podolí (viz Podklady [P 39]).

Výkon úpravny vody:

Výkon úpravny vody:	
maximum (krátkodobé)	2500 l/s
průměr	2200 l/s
minimum (provozní)	500 l/s

V roce 1929 byla v Praze - Podolí uvedena do provozu úpravna vody, která upravovala infiltrovanou říční vltavskou vodu. Úpravna vody byla postavena na místě staré pražské vodárny. Technologie úpravy vody spočívala ve vícestupňové filtraci systému Puech - Chaball. Voda se při úpravě provzdušňovala, třikrát filtrovala a dočišťovala na pomalých biologických filtrech. Výkon úpravny vody byl cca 400 l/s.

Potřeba další pitné vody byla řešena doplněním technologie úpravy vody o dávkování síru nízkého do surové vody s následným odfiltrováním nečistot vázaných na vločky na pomalých filtrech. Toto zařízení bylo uvedeno do provozu v roce 1932 a kapacita úpravny vody se tak zvýšila na 640 l/s. Poslední krok úprav technologické linky úpravny vody Podolí proběhl v roce 1942. Třístupňová filtrace byla nahrazena rychlofiltry typu Wabag. Tato úprava přinesla sice zvýšení výkonu na cca 1040 l/s, ale vzhledem k tomu, že část takto získané vody bylo nutno...
použit na čištění reakčních nádrží, byl využitelný výkon cca 890 l/s. Tím byly další možnosti intenzifikace stávající technologické linky úpravy vody prakticky vyčerpány.

Po dokončení rekonstrukce v polovině šedesátých let se dalších 25 let do rozvoje úpravy vody Podolí neinvestovalo. V souvislosti s výstavbou úpravy vody Želivka se vážně uvažovalo i s ukončením provozu úpravy vody Podolí. Z těchto důvodů byly omezeny finanční prostředky poskytované pro provoz úpravy vody na minimum. Prostředky, které byly k dispozici, stačily pouze na nejnutnější údržbu. Na polovině 80.let se technický stav úpravy vody naléhavě zhoršil, že bylo nutné rozhodnout zda bude provoz zastaven a nebo bude zahájena rekonstrukce. Potřeba vody v Praze a ve středočeské aglomeraci v té době rychle rostla a situaci bylo nutné řešit rychleji. Rekonstrukci úpravny vody nebylo možné odkládat, protože úpravna vody Podolí stále více hrozila výpadkem ve výrobě, který by znamenal kolaps v zásobování Prahy vodou.

Významnou složkou všech rekonstrukčních prací byla sanace stavebních konstrukcí poškozených dlouholetým působením agresivního prostředí charakteristického pro vodárenské objekty. Vzhledem k tomu, že je úpravna vody Podolí významnou technickou památkou bylo nutné při rekonstrukci respektovat řadu požadavků ze strany památkářů.

Ve všech třech etapách byl pro rekonstruované provozní celky doplňován systém řízení technologických procesů.

K rekonstrukci úpravny vody Podolí třeba ještě uvést několik informací k výkonu úpravny vody. V době přípravy rekonstrukce a realizace první a z části i druhé etapy byla úpravna vody provozována na výkon blížící se 2000 l/s. Rekonstruované technologické zařízení bylo dimenzováno pro maximální výkon 2500 l/s. Výrazný pokles potřeby vody v Praze se neočekával.

S poklesem potřeby vody v Praze v průběhu devadesátých let se snížovaly požadavky na výrobu úpravny vody. V období, kdy se dokončovala rekonstrukce, se výkon pohyboval v rozmezí 500 - 700 l/s a od léta 2002 je úpravna vody mimo provoz. Po povodni 2002 byla uvedena do stavu „studené rezervy“ a je používána pouze při plánovaných odstávkách většího rozsahu a čtyřikrát dvakrát ročně je ověřována její provozuschopnost.

V případě, že by se do budoucnosti uvažovalo s opětovným uvedením do provozu, bude třeba, pokud se ve Vltavě výrazně nezlepší kvalita vody, doplnit technologickou linku úpravy vody o oxidaci (ozonizace nebo chlordioxid) a filtraci přes granulované aktivní uhlí - připravováno v r. 99 jako 3. etapa rekonstrukce.

Technologická linka úpravny vody se skládá z těchto částí:

- jímání surové vody a její čerpání,
- předalkalizace vápnem,
- destabilizace dávkováním síranu železitého (70 – 120 mg/l) s hydraulickou homogenizací v potrubí,
- 1. separační stupeň - čiření (pomalé míchání a separace vločkovým mrakem)
 4 čiřiče, každý o jmenovitém výkonu 325 l/s
 3 čiřiče, každý o jmenovitém výkonu 400 l/s
 dávkování pomocného flokulantu do pomalého míchání sedmi čiřičů
 2 čiřiče, každý o jmenovitém výkonu 250 l/s
 pro zahušťování odtahu z mraku ostatních čiřičů (s možností samostatného provozu při potřebě zvýšení výkonu úpravy),
- alkalizace vápnem,
- 2. separační stupeň písková rychlofiltrace
 stará filtrace - 36 filtrů s celkovou plochou : 2852 m²
 nová filtrace - 4 filtry - filtrace odsazené vody z čiřičů č.1 a 2 s celkovou plochou : 255 m²,
- alkalizace vápnem,
hygienické zabezpečení chlórem,
čerpací stanice upravené vody,
kalové hospodářství – kaly z čířičů se odvádějí do městské kanalizace, prací vody z filtrů jsou vraceny zpět do surové vody před technologickou linku úpravy vody nebo vypouštěny do kanalizace. Technologické odpadní vody (kaly) jsou stokou K odváděny na ústřední čistírnu odpadních vod. Do Vltavy tj. do Podolky jsou odváděny pouze dešťové vody, voda z bezpečnostních přelivů a odvodnění jednotlivých objektů.

Aktualizace 2016 od roku 2013 ÚV Želivka uvedena v Plánu rozvoje vodovodů a kanalizací Středočeského kraje.

4.3.3.3 ZDROJ ŽELIVKA

4.3.3.3.1 Popis zdroje

Pro úpravnu vody Želivka je zdrojem surové vody vodárenská nádrž Švihov, postavená 4 km nad využitím řeky Želivka do Sázavy. Nádrž a hráz patří pod správu státního podniku Povodí Vltavy.

Řeka Želivka má tyto parametry:
- Délka toku : 88 km
- Plocha povodí : 1180 km²
- Průměrné srážky : 700 mm/rok
- Průměrný průtok : 7 m³/s
- Qₜₚᵢₜ : 1,9 m³/s

Vodárenská nádrž Švihov má tyto parametry:
- Výška zemní hráze : 58 m
- Objem nádrže : 266,5 mil.m³
- Objem zásobního prostoru : 245 mil.m³
- Nalepšovací účinek : 5,25 m³/s

Délka vzdutí vodárenské nádrže Švihov je 38 km, maximální hloubka v nádrži je 53,6 m, průměrná hloubka je 18 m.

Hráz vodárenské nádrže je zemní s návodním hlinitým těsněním. Odběr vody z nádrže se provádí etážově ze dvou odběrných oken. Každá z nich má pět odběrných oken rozměru 1,8 × 1,8 m. Etážové odběry vody umožňují odebírat surovou vodu nejvhodnější kvality z hlediska účinnosti technologie úpravy vody.

4.3.3.3.2 Úpravna vody Želivka

Voda je odebrána na základě Rozhodnutí vydaného Městským úřadem Vlašim, odborem životního prostředí okresní úřadem Benešov, referátem životního prostředí, jako věcně a místně příslušným vodohospodářským orgánem ve smyslu § 104 odst. 2 písm. c) zák. č. 264/2001 Sb. o vodách a o změně některých zákonů (vodní zákon) ve znění pozdějších předpisů pod č.j. ZIP-25721/07-617/2006/ PeV a prodlužuje dobu platnosti povolení k nakládání
Aktualizace PRVKUK hl.m. Prahy

A.2 Popis nadobecněho systému vodovodů a kanalizace v kraji

PRVKUK

AKTUALIZACE k roku 2007 - psáno modře

AKTUALIZACE k roku 2010 - psáno červeně

AKTUALIZACE k roku 2016 – psáno zeleně

Povrchová voda z vodárenské nádrže Želivka je odebírána v množství:

<table>
<thead>
<tr>
<th>množství</th>
<th>m³/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>průměrné množství</td>
<td>5,25</td>
</tr>
<tr>
<td>maximální množství</td>
<td>7,7</td>
</tr>
<tr>
<td>průměrné denní množství</td>
<td>453600</td>
</tr>
<tr>
<td>maximální roční množství</td>
<td>165,6 mil.</td>
</tr>
<tr>
<td>maximální měsíční množství</td>
<td>17 mil.</td>
</tr>
</tbody>
</table>

Výkon úpravny-vody:

<table>
<thead>
<tr>
<th>m³/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>maximum</td>
</tr>
<tr>
<td>průměr</td>
</tr>
<tr>
<td>minimum (provozní)</td>
</tr>
</tbody>
</table>

Technologická linka je ukončena měrným objektem s dávkováním vápené vody pro stabilizaci kyselinicku uhličitého a chlorem pro hygienické zabezpečení. Z měrného objektu je voda odváděna do dvou komor regulačního vodojemu o objemu 20000 m³. Na regulační vodojemy navazuje štolový přivaděč dlouhý 52 km, kterým je upravená voda dopravována do vodojemu Jesenice v Praze a objemu 200000 m³. Areál úpravny vody pak doplňují další objekty včetně...
čerpacích stanic pro HU PE PO (zásobení Humpolce, Pelhřimova a Pacova) a Havlíčkův Brod.

Technologická linka úpravny vody se skládá z těchto částí:
- čerpací stanice surové vody,
- dávkování chemikálií,
- koagulant - používá se síran hlinitý (dávka 12 – 20 mg/l) s možností úpravy pH kyselinou sírovou,
- hydrát vápenný - úprava pH surové vody,
- práškové aktivní uhlí - je určeno pro odstranění případného pachu nebo při zvýšených koncentracích pesticidů v surové vodě,
- hydrát vápenný - úprava pH surové vody,
- práškové aktivní uhlí - je určeno pro odstranění případného pachu nebo při zvýšených koncentracích pesticidů v surové vodě,
- manganistan draselný - je určen pro případ zvýšeného obsahu manganu v surové vodě,
- písková filtrace, která je rozdělena do tří linek:
 - u linky č. 1 s výkonem 3000 l/s byla na 32 otevřených rychlofiltrách (plocha 97 m², filtrační rychlost 3,8 – 4,4 m/hod.) použita koagulační filtrace,
 - u linky č. 2 a č. 3 s výkonem 4000 l/s je před 24 pískových rychlofiltrů (plocha 97 m², filtrační rychlost 6 – 8 m/hod.) zařazeno rychlé míchání,
- ozonizace,
- dávkování chemikálií
- hydrát vápenný - stabilizace upravené vody,
- chlor - hygienické zabezpečení,
- akumulace upravené vody.

Podmínky pro zvýšení kapacity zdroje

Faktory ovlivňující snížení kapacity zdroje
Snižení průměrného výkonu se předpokládá na cca 3500 l/s při poklesu hladiny od maximálního provozního rozpětí 0 – 3 m. Podle vodohospodářského řešení nádrže pokles hladiny v rozsahu 0 – 5 m od nejvyššího provozního hladiny zabezpečuje průměrný odboč 3650 l/s.

Posouzení snížení výkonu z případných čistotářských havárií je zahrnuto do následujícího odstavce.

konec Aktualizace 2016

4.3.4 HODNOCENÍ ZDROJŮ Z HLEDISKA JAKOSTI SUROVÉ A UPRAVENÉ VODY

4.3.4.1 SUROVÁ VODA

V průběhu roku 2003 bylo provedeno první vyhodnocení kvality surové vody jednotlivých zdrojů z roku 2002 z hlediska zákona č.274/2001 Sb. o vodovodech a kanalizacích, ve znění pozdějších předpisů, a prováděcí vyhlášky č.428/2001 Sb., ve znění pozdějších předpisů (příloha č.10) zavádí hodnocení podzemních a povrchových zdrojů z hlediska jakosti surové vody. Povrchové jsou z hlediska dodržení vyjmenovaných ukazatelů jakosti vody zařazeny do
Aktualizace PRVKUK hl.m. Prahy

A.2 Popis nadobecných systémů vodovodů a kanalizace v kraji

PRVKUK

AKTUALIZACE k roku 2007 - psáno modře
AKTUALIZACE k roku 2010 - psáno červeně
AKTUALIZACE k roku 2016 – psáno zeleně

Sweco Hydroprojekt a.s.

Aktualizace PRVKUK hl.m. Prahy

A.2 Popis nadobecných systémů vodovodů a kanalizace v kraji

ČÍSLO ZAKÁZKY: 11 6162 01 01
VERZE: ad
ARCHIVNÍ ČÍSLO: 005340/16/1
REVIZE: 1

Aktualizace 2007

AKTUALIZACE k roku 2010 - psáno červeně

AKTUALIZACE k roku 2016 – psáno zeleně

třech skupin označených A1, A2 a A3. Pro povrchové zdroje je stanoveno 47 ukazatelů jakosti vody a pro podzemní zdroje jsou pro kategorii A3 pozměněny 3 ukazatele jakosti vody. Pro jednotlivé ukazatele jakosti vody jsou stanoveny směrné, nepovinné hodnoty nebo mezní, povinné hodnoty, případně obě hodnoty. Pro jednotlivé kategorie jsou doporučeny typy úprav:

A1 – jednoduchá fyzikální úprava a dezinfekce, například rychlá filtrace a dezinfekce, popř. prostá písková filtrace, chemické odkyselení nebo mechanické odkyselení či odstranění plynných složek provzdušňováním,

A2 – běžná fyzikální úprava, chemická úprava a desinfekce, koagulační filtrace, infiltrace, pomalá biologická filtrace, flokulace, usazování, filtrace, desinfekce (konečné chlorování), jednostupňové a dvoustupňové odželezňování a odmanganování

A3 – intenzivní fyzikální úprava vody, rozšířená úprava a dezinfekce, např. chlorování do bodu zvratu, koagulace, flokulace, usazování, filtrace, adsorbce (aktivní uhlí), desinfekce (ozón, konečné chlorování). Kombinace fyzikálně chemické a biologické úpravy.

Pro zařazení surové vody do kategorie jsou v příloze č.10 definovány základní podmínky a stanovován je index upravitelnosti pro standardní metody úpravy vody. Pro jednotlivé kategorie jsou doporučeny indexy upravitelnosti v tomto rozsahu

A1: 0 – 2
A2a: 2 – 2,5
A2b: 2,5 – 3
A3: > 3

Z provedeného posouzení za rok 2009 vyplývá:

1. řeka Jizera (úpravna vody Káraný) - z posouzení ukazatelů kategorie podle mezních hodnot vyplývá, že bylo dosaženo nejvyšší kategorie 3 pro fenoly jednosytné, BSK, a huminové látky. 4 pro AOX. Kategorie 3 pro amonné ionty a huminové látky. Průměrný index upravitelnosti byl stanoven na 1,45. Z posouzení ukazatelů kategorie podle směrných hodnot vyplývá, že bylo dosaženo nejvyšší kategorie 4 pro fluoridy, nasycení kyslíkem, BSK5, celkový dusík, huminové látky, koliformní bakterie, termotolerantní koliformní bakterie a mikroskopický obraz, kategorie 3 pro extrahované látky, AOX, kobalt, vanad, fenoly jednosytné, NEL, CHSK, celkový dusík, huminové látky, koliformní bakterie a mikroskopický obraz. Průměrný index upravitelnosti byl stanoven na 1,38. Z posouzení ukazatelů kategorie podle směrných hodnot vyplývá, že bylo dosaženo nejvyšší kategorie 4 pro AOX, fosforečnany, amonné ionty, koliformní bakterie a mikroskopický obraz, kategorie 3 pro extrahované látky, AOX, BSK, celkový dusík, amonné ionty, koliformní bakterie a mikroskopický obraz. Průměrný index upravitelnosti byl stanoven na 1,66. Z posouzení ukazatelů kategorie podle směrných hodnot vyplývá, že bylo dosaženo nejvyšší kategorie 4 pro fluoridy, nasaliticí dusíku, koliformní bakterie a salmonely, kategorie 3 pro fenoly jednosytné, NEL, CHSK, huminové látky, koliformní bakterie a mikroskopický obraz. Průměrný index upravitelnosti byl stanoven na 1,7.

2. údolní nádrž Švihov (úpravna vody Želivka) - z posouzení ukazatelů kategorie podle mezních hodnot vyplývá, že bylo dosaženo nejvyšší kategorie 3 pro fenoly jednosytné, BSK, a huminové látky. 4 pro AOX. Kategorie 3 pro amonné ionty a huminové látky. Průměrný index upravitelnosti byl stanoven na 1,45. Z posouzení ukazatelů kategorie podle mezních hodnot vyplývá, že bylo dosaženo nejvyšší kategorie 4 pro fenoly jednosytné, BSK, a huminové látky. 4 pro AOX. Kategorie 3 pro amonné ionty a huminové látky. Průměrný index upravitelnosti byl stanoven na 1,38. Z posouzení ukazatelů kategorie podle směrných hodnot vyplývá, že bylo dosaženo nejvyšší kategorie 4 pro fluoridy, nasycení kyslíkem, BSK5, celkový dusík, huminové látky, koliformní bakterie, termotolerantní koliformní bakterie a mikroskopický obraz, kategorie 3 pro extrahované látky, AOX, kobalt, vanad, fenoly jednosytné, NEL, CHSK, celkový dusík, huminové látky, koliformní bakterie a mikroskopický obraz. Průměrný index upravitelnosti byl stanoven na 1,41. Zařazení do kategorie surové vody bude uvedeno až v roce 2005.

Aktualizace 2016

od roku 2013 nádrž Švihov součástí Plánu rozvoje vodovodů a kanalizací Středočeského kraje.

konec Aktualizace 2016

Aktualizace 2015
3. řeka Vltava (úpravna vody Podolí) - z posouzení ukazatelů kategorie podle mezních hodnot vyplývá, že bylo dosaženo nejvyšší kategorie 4 pro pesticidní látky AOX a BSK, kategorie 3 pro fenoly jednosytné a huminové látky. Průměrný index upravitelnosti byl stanoven na 1,58 (1,52). Z posouzení ukazatelů kategorie podle směrných hodnot vyplývá, že bylo dosaženo nejvyšší kategorie 4 pro fluoridy, celkový dusík a celkový organický uhličitan, kategorie 3 pro AOX, kobalt, vanad, fenoly jednosytné, NEL, CHSKe, huminové látky, koliformní bakterie, salmonely a mikroskopický obraz. Průměrný index upravitelnosti byl stanoven na 1,77.

Zařazení do kategorie surové vody bude uvedeno až v roce 2005.

4.3.4.2 UPRAVENÁ VODA

Po porovnání ukazatelů jakosti pitné vody a vyhlášky dospěl zpracovatel studie k následujícímu pořadí zdrojů z hlediska kvality vody:

Aktualizace 2016

2. Úpravna vody Želivka – plněny jsou všechny ukazatele vyhlášky s výjimkou občasného překročení v ukazateli počet živých organismů v období „jarního oživení nádrže“, v ukazatele psychofilní a mezofilní bakterie a pesticidní látky (terbuthylazin) (0,3 jedince/ml). Obsah organických látek, syntetických organických látek a těžkých kovů byl v uplynulých letech nízký. Z hlediska koroze na kovová potrubí je voda podle TNV 75 7121 zařazena do druhé kategorie agresivity – voda středně agresivní.

konec Aktualizace 2016

4.3.5 PŘEHLED NAVRŽENÝCH OPATŘENÍ NA ZDROJÍCH

Ze souhnutí opatření navržených v „Koncepčním modelu“ bylo Pražskou vodohospodářskou společností a.s. objednáno v roce 2005 zpracování Technologického auditu pro úpravnu vody Káraný a Technologického auditu pro úpravnu vody Želivka.

V současné době zpracovává Hydroprojekt CZ a.s. Studii proveditelnosti na rekonstrukci filtrace na úpravě vody Káraný. V roce 2010 byl zpracován projekt pro výběr zhotovitele.

V roce 2010 byla zpracována Hydroprojektem CZ a.s. Studie Úpravna vody Želivka – Rekonstrukce přípravy suspenze pro II. a III. linku filtrace [P 22].

Do „Plánu rozvoje vodovodů a kanalizací hl. m. Prahy“ jsou zařazeny tyto nejdůležitější investiční akce související se zdroji a úpravami:

Úpravna vody Želivka:
- rekonstrukce ozonizace realizováno v roce 2010, všechny tři etapy bude realizována podle varianty 5 technicko-ekonomická studie [P 17], stávající ozonizační linka bude postupně doplněna linkou vyrábějící ozon z kyslíku. Varianta je rozložena na tři etapy:
 I. etapa zahrnuje:
 - doplnění druhé linky na výrobu ozonu z kyslíku o výkonu 16 kg/hod. Směšování je navrženo v jedné směšovací nádrži statickým směšovačem. Stávající linka zůstane v provozu včetně směšovače,
 II. etapa:
 - v případě příznivých výsledků směšování, budou statické směšovače doplněny do dvou směšovacích nádrží,
 III. etapa zahrnuje:
 - doplnění druhé linky výroby ozonu po dožití stávající linky,
- rekonstrukce vápenného hospodářství – provedeno v roce 2008
- rekonstrukce čerpacích stanic (projektování investiční akce Rekonstrukce čerpací stanice P 22, P 23)
- rekonstrukce kalového hospodářství v návaznosti na změnu technologie.

konec Aktualizace 2016

Úpravna vody Káraný
- rekonstrukce energo centra a čerpací stanice – dokončena,
- rekonstrukce káranšských řadů, – dokončena rekonstrukce výpustí
- technická opatření pro nouzové zásobování,

V textu jsou uvedena pouze nejvýznamnější navržená opatření s předpokládaným objemem investic minimálně 30 mil. Kč.
Aktualizace PRVKUK hl.m. Prahy

A.2 Popis nadobecních systémů vodovodu a kanalizace v kraji

AKTUALIZACE k roku 2007 - psáno modře
AKTUALIZACE k roku 2010 - psáno červeně
AKTUALIZACE k roku 2016 – psáno zeleně

- rekonstrukce filtrace podle auditu [P15] budou filtry přebudovány na filtry s drenážním systémem, vyžadující rekonstruk,
- obměna hlavního čerpadla č 1,
- rekonstrukce svodního řadu 2. část,
- rekonstrukce svodního řadu výměna 7 shybek pod Jizerou,
- rekonstrukce 1 a 2 výtlacného řadu Káraný-Toušeň,
- rekonstrukce 1 výtlacného řadu Toušeň, Zeleneč, Horní Počernice,
- rekonstrukce 1 výtlacného řadu před horními Počernicemi,
- rekonstrukce jímacích studní břehové infiltrace
- Rekonstrukce VN 22 kV Sojovice- Skorkov
- Rekonstrukce vystrojení vzušníkových šachet 3. Výtlacného řadu
- Rekonstrukce objektu Vysoká Mez
- Rekonstrukce technologie 4.ČS Benátky
- Nová trafostanice v hlavní čerpací stanici v Káraném

Úpravna vody Káraný umělá infiltrace od roku 2013 provozovatel Zdroj pitné vody Káraný, a.s.
- rekonstrukce čerpací stanice ÚV Sojovice
- rekonstrukce filtrace l - 6 filtrů - ÚV Sojovice [P 21] dokončeno,
- rekonstrukce filtrů 7-12 realizace v letech 2016-2017

Pozn.: Jsou uvedeny pouze zásadní koncepční investiční projekty. Paralelně probíhá a byla dokončena řada projektu menšího rozsahu významných pro provoz úpravny vody.

ÚV Podolí
- ÚV Podolí – rekonstrukce čerpací stanice upravené vody,
- rekonstrukce čerpadelníků
- automatický systém řízení úpravny vody (rozšíření a dokončení)
- sanace železobetonových stropů v budově staré filtrace
 Pozn.: V roce 2009 byl dokončen projekt Hygienické zabezpečení chlorem.
- sanace železobetonových stropů staré filtrace
- rekonstrukce čerpací stanice

V tabulkách XI jsou uvedena jednotlivá navrhovaná opatření včetně navrhovaných termínů realizace a předpokládaných investičních nákladů.

4.4 PRAŽSKÝ VODÁRENSKÝ SYSTÉM

4.4.1 DOPRAVA VODY

4.4.1.1 SOUHRNÍ INFORMACE

Uspořádání hlavního dopravního systému vyplývá z polohy zdrojů, respektive ze směrů, ze kterých je pitná voda od jednotlivých zdrojů přiváděna. Voda z největšího pražského zdroje,
z úpravny vody Želivka, je přivedena na jihovýchodní okraj města k obci Jesenice do vodojemu Jesenice I, pitná voda z úpravny vody Káraný je přivedena ze severovýchodu, zatímco úpravna vody Podolí - ve stavu studené rezervy, je umístěna jižně od centra města.

Dalším faktorem, který se významně podílí na systému rozvodu vody, je velikost dodávky z jednotlivých zdrojů.

To vše, spolu se snahou umožnit vzájemnou zastupitelnost jednotlivých zdrojů, vedlo v minulosti k vytvoření pateřního velkoprofilového okruhu. Do okruhové části rozvodu je přiváděna voda z úpravny vody Želivka a z úpravny vody Káraný, radiální část systému byla zásobována z úpravny vody Podolí. Tím je umožněno zásobovat centrum města ze všech tří zdrojů a současně to také umožňuje i jejich vzájemnou nahraditelnost.

Celkové uspořádání distribučního systému je patrné ze situací 1:25000.

4.4.1.2 TECHNICKÉ INFORMACE K DISTRIBUČNÍMU SYSTÉMU

Zúdají, které byly k dispozici k distribučnímu systému vyplývá, že je systém tvořen ze 70 % potrubím o profilu DN 800 a vyšším, včetně štoly z úpravny vody Želivka do vodojemu Jesenice. V případě vyložení štoly pak tvoří podíl profilů DN 800 a větších 66 % celkové délky trubního systému. Dalších 26 % distribučního systému je tvořen z potrubí o profilu DN 500 až DN 700. Z pohledu materiálového složení je provedeno 56 % distribučního systému ocelového potrubí a 43 % z litinového potrubí, pouze 0,2 % distribučního systému je však z tvárné litiny. Distribuční systém je tvořen ze 44 % ocelového potrubí s profilom DN 800 a vyšším.
Aktualizace PRVKUK hl.m. Prahy

A.2 Popis nadobecních systémů vodovodu a kanalizace v kraji

PRVKUK

AKTUALIZACE k roku 2007 - psáno modře
AKTUALIZACE k roku 2010 - psáno červeně
AKTUALIZACE k roku 2016 – psáno zeleně

Z tohoto krátkého přehledu je patrné, že je prakticky polovina distribučního systému sestavena z ocelového potrubí velkých profilů, které je především z hlediska korozí velmi rizikové. Tuto situaci ještě dále zhoršuje skutečnost, že významná část těchto velkých potrubí byla postavena v osmdesátých letech, kdy přestala být používána bez náhrady asfaltové izolace. Mimo to je oblast ovlivněna bludnými proudy různé intenzity. Výbavení vodovodních řad aktivní ochranou se velice liší, některé řady jsou chráněny komplexně, některé částečně a ochrana je zajištěna jen v krátkých úsecích a dále jsou řady, které nejsou chráněny, přestože se na nich vyskytují opakované korozní poruchy. Nelze předpokládat, že intenzita bludných proudů v nejbližším období významně poklesne. Dopravní systémy produkující bludné proudy se sice stále modernizují a zvýšují, ale zároveň se také rozšiřují.

4.4.1.3 PŘEHELD NAVRŽENÝCH OPATŘENÍ NA DISTRIBUČNÍM SYSTÉMU

V následujícím přehledu uvádíme nejdůležitější navržené opatření:

- prioritou je rekonstrukce řadu DN 1200 a dostavba nového řadu DN 1200 mezi čerpací staniči Chodová a Kyjským uzlem. Při rekonstrukci tohoto řadu, která je nezbytná s ohledem na technický stav potrubí, investiční záměr je zařazen do programu Operační program Životní prostředí – velké projekty MŽP a je rozdělen na etapy:
 - výstavba a zprovoznění propojovacího řadu DN 800, dokončeno
 - výstavba páteřního řadu DN 1200, etapa C
 - rekonstrukce šoupátkového objektu Košik,
 - napojení VDJ Chodová na páteřní řad,
 - obnova páteřního řadu DN 1200, etapa A+B+C
 - obnova řadu DN 600 VDJ Hostivař-Kyjský uzel
- rekonstrukce přívodního řadu DN 600 do vdj. Baně v městské části Zbraslav, dokončeno v roce 2010
- přeložka řadu DN 1200 Kopanina – Suchdol mezi ul. Plzeňská a Drahoňovského
- rekonstrukce přívodního řadu DN 1200 mezi vodojemy Kopanina a Suchdol je rozdělena na etapy:
 - řad DN 1200 v úseku mezi uličí Evropskou vdj. Suchdol.
 - řad DN 1000 vdj. Vidoule - vdj. Kopanina,
 - řad DN 600 vdj. Ovčín- vdj. Barandov Slivenec,
- rekonstrukce distribučního uzlu v úpravně vody Podolí,

Sweco Hydroprojekt a.s.
rekonstrukce řadu DN 900 v dj. Flora – v dj. Karlov, řad možná částečně uložit v kolektoru (nutná koordinace s výstavbou kolektorů),
• rekonstrukce řadu DN 700 v dj. Karlov – v dj. Bruska, řad možná částečně uložit v kolektoru (nutná koordinace s výstavbou kolektorů),
• řad DN 1000 v dj. Chudová – v dj. Spořilov (rekonstrukce celého řadu), dokončeno
• řad Flora – Mazanka DN 800 (rekonstrukce části řadu),
• řad Mazanka – Kobylišky DN 800 (rekonstrukce dolní části řadu),
• řad DN 1200 ÚV Podolí – v dj. Flora (rekonstrukce celého řadu),
• řad DN 1200 ÚV Podolí – v dj. Z. Liška (rekonstrukce celého řadu),
• řady DN 500 v dj. Bruska – v dj. Vyhliďky DN 550 a 450 rekonstrukce rozdělena na části, v PRVKU 1 část ulice Pod Hradbami a Dělostřelecká úsek o délce 560 m), částečně zrealizováno
• řady DN 500 v dj. Bruska – v dj. Andělky DN 550 a 450 (rekonstrukce), dokončeno
• řad DN 500 v dj. Vidoule – v dj.Vypich (náhrada nevyhovujícího azbestocementu) – realizováno v roce 2005,
• řad DN 400 ve Velké Chuchli, který propojuje řady Jesenice – Strážková a Jesenice – Vidoule (rekonstrukce skoro celého řadu bezvýkopovou technologií vyvolávacím stávajícího ocelového potrubí samonosným materiálem PE) – investice spadá do operačního programu Konkurenceschopnosti, - zrealizováno
• řad DN 800 SO Žvahov – v dj. Malvazinky (rekonstrukce části řad),
• řad DN 600 ÚV Podolí - v dj. Laurová (rekonstrukce starého řadu), řad možná částečně uložit v kolektoru (nutná koordinace s výstavbou kolektorů),
• řad DN 700 ÚV Podolí – v dj Karlov (rekonstrukce starého řadu), řad možná částečně uložit v kolektoru (nutná koordinace s výstavbou kolektorů),
• řad DN 700 v dj. Flora – v dj. Vinohrady (rekonstrukce starého řadu) možno uložit do kolektoru,
• řad DN 400 v dj. Vyhliďky – v dj. Petřín (rekonstrukce starého řadu),
• řad DN 500 v dj. Vyhliďky – v dj. Vypich DN 500 (rekonstrukce starého řadu),
• řad DN 1100 ÚV Káraný – v dj. Flora – částečně zrealizováno,
• výťažný řad DN 500 ČS Sédlec – v dj Suchdol (rekonstrukce celého řadu),
• řad DN 400-450 SO Zálesí – v dj. Novodvorská (rekonstrukce),
• řad DN 1000 v dj Zelená Liška – ul. Humpolecká (rekonstrukce), dokončeno
• VDJ Flora - VDJ Bruska řad DN 900 a 700 (rekonstrukce) – částečně zrealizováno,
• sanace trhlin betonového ostění štolového přívaděče – km 47,945 až 47,965 + propoj na Ládví I., který bude předcházet,
• výstavba řadu DN 800-DN1000 z Jesenice II. do oblasti JV Prahy – Etapa I., II a III. (podmínka pro navýšení odběru vody pro obce Středočeského kraje)
• rekonstrukce stávajícího řadu DN 800 na DN 1000 (Košík – Kozinec)
• rekonstrukce řadu DN 500 Klíčov-Vysočany
• obnova / zkupacitnění přívaděcího řadu DN 300 Rohožník
• obnova řadu DN 500 a 400 Hrdlořezy-Vysočany
• obnova řadu DN 800 Ládví III – Čakovice (část řadu v oceli),
• Zkapcitnění a obnova přívaděcího řadu DN 800/600 z ŠO Zálesí do VDJ Zelená Liška a osazení redukčního ventila ve VDJ Zelená Liška (posílil dopravu vody z VDJ Jesenice do ÚV Podolí a do VDJ Flora)
• dostavba řadu DN 400 Sebev – Kateřinky
• zdvojení a nebo zkupacitnění přívaděcího řadu Podolí – Laurová v úseku pod Smíchovským nádražím
• Zokruhování výťažného řadu Praha Východ (2021)
Na základě výsledků detailního posouzení možností výkonů ÚV Podolí pro dodávku pitné vody v kvalitě odpovídající platným právním předpisům, bude nutné posoudit distribuční systém Prahy a definovat nutné investice a opatření vyplývající z potřeby distribuce vody z ÚV Podolí na západ a jih Prahy.

4.4.2 ZÁSOBNÍ PÁSMA A ROZVODNÁ SÍŤ V ZÁSOBNÍCH PÁSMECH

4.4.2.1 ČLENĚNÍ PRAŽSKÉHO VODOVODU NA ZÁSOBNÍ PÁSMA

Poměrně složitý systém zásobních pásem vznikl historickým vývojem pražského vodovodu a postupným propojováním jednotlivých jeho částí. V minulosti bylo pro zásobní pásma charakteristické poměrně volné pojetí hranic zásobních pásem, které byly podle potřeb provozu měněny. To umožňovalo provozovateli vodovodu zajišťovat pružně dodávku pitné vody v období, kdy byl pražský vodovod provozován na hranici své kapacity.

V pražském vodovodu tak bylo vytvořeno celkem 173 zásobních pásem včetně dvou zásobních pásem průmyslového vodovodu. V posledních několika letech byla zásobní pásma postupně stabilizována a jednotlivá pásma jsou oddělena sekčními uzávěry. Na přítoku do zásobních pásem je doplňováno měření průtoku a postupně je v jednotlivých zásobních pásmech prováděn „vodní audit“, který je zaměřen především na definování spotřeby vody, sledování fakturace, vyhledávání poruch a snižování úniků.

4.4.2.2 ROZVODNÁ SÍŤ

Rozvodná síť, která slouží pro rozvedení vody v jednotlivých zásobních pásmech, je bezesporu kritickým místem pražského vodovodu. Její technický stav vyvolal již v minulosti potřebu zvyšovat kapacitu zdrojů, v některých případech i negativně ovlivňuje kvalitu pitné vody, zvyšuje cenu vodného a častými poruchami narušuje chod města.

Celková délka potrubí v rozvodné síti byla k roku 2006 - 3564 km, tj. 3 m na jednoho obyvatele. Délka potrubí na jedno připojení je 36,8 m a celková délka připojek je 711 km.

Celková délka potrubí v rozvodné síti byla k roku 2009-3694 km, tj. 3 m na jednoho obyvatele. Délka potrubí na jedno připojení je 34,3 m a celková délka připojek je 762 km.

Celková délka potrubí v rozvodné síti byla k roku 2015 3527 km, tj. 2,78 m na jednoho obyvatele. Délka potrubí na jedno připojení je 31,4 m a celková délka připojek je 797 km.

V rozvodné síti jsou zastoupena potrubí od profilu DN 80 až po DN 800. Rozhodující podíl vodovodní síť je tvořen potrubím o profilu DN 100 – 175 mm, kterých je téměř 50 %.

Průměrné stáří potrubí je cca 38 let (zbytková životnost 65 let). Největší podíl vodovodních řad (27,3 %) tvoří řady staré 25 – 45 let, to jsou řady postavené v letech 1960 – 1980. Druhou skupinu (17,8 %) tvoří řady staré 65 – 85 let, to jsou řady postavené v letech 1920 – 1940. Výjimkou však nejsou ani řady starší než 100 let, kterých je cca 2,%, tj. 68 km.
Z uvedeného přehledu je patrné, že je téměř 52 % vodovodní sítě mladší než 40 let.

Naprostá většina vodovodní sítě, téměř 85 %, byla postavena z šedé litiny v různém stáří a s rozdílnou kvalitou. Tepře v posledních letech, především při plošných rekonstrukcích, je používána výhradně tvárná litina. Její podíl na celkové délce vodovodní sítě je však zatím nepatrný.

Druhou nejvíce zastoupenou skupinou jsou potrubí ocelová, která tvoří cca 10 % celkové délky potrubí, a která byla nejvíce používána pro velké profily potrubí právě při výstavbě distribučního systému v sedmdesátých a osmdesátých letech 20. století. Minimalně byla v Praze v minulosti používána potrubí z umělých hmot, s výjimkou přípojek, a jejich délka proto tvoří necelých 5 % celkové délky potrubí.

4.4.2.3 POSOUZENÍ ZÁSOBNÍCH PÁSEM

Hodnocení zásobních pásem bylo provedeno z hlediska různých kritérií s cílem vytipovat pásmo s největším rizikem z hlediska možných poruch, havárií či pásma vyžadující provedení zásahu.

Hlavním kritériem je podíl vody nefakturované na dodávce vody do jednotlivých zásobních pásem vyjádřený měrným únikem nebo procentním podílem a četnost havárií v zásobním pásmu. Výsledné hodnoty těchto kritérií jsou důsledkem součtu řady technických vlivů, které se v jednotlivých zásobních pásech uplatňují:

- kvalita měření spotřeby vody v zásobních pásech,
- tlakové poměry v zásobních pásech,
- materiály použité při výstavbě vodovodních sítí,
- stáří potrubí v zásobních pásech,
- stavební podmínky, geologické poměry.

Dá se říci, že zásobní pásma jsou poměrně rovnoměrně rozložena po celé škále možných případů z hlediska úniků vody. Měrné úniky vody z potrubí se pohybují od prakticky nulových hodnot až po více jak 19000 m³/km×rok.

4.4.2.4 ÚPRAVY HRANIC ZÁSOBNÍCH PÁSEM, NOVÁ ZÁSOBNÍ PÁSMA A DOSTAVBA VODOVODNÍHO SYSTÉMU

Z posouzení zásobních pásem vyplývá, že bude do budoucnosti třeba řešit změny hranic zásobních pásem ve dvou v některých pražských oblastech:

- v oblasti Starého Města, které je zásobené v současnosti z vdj. Karlov a přes redukce z vdj. Flora a vdj. Vinohrady (Korunní). V souvislosti s realizovanou systémovou obnovou sítí bude vhodné v této oblasti optimalizovat členění území na zásobní pásma,
zásobena z gravitace Jesenice II – návrh detailní fáze Generelu [P 34] a dalších koncepčních projektových dokumentací, propoj DN 800 v provozu

Úpravy a změny zásobních pásem vyplývají z projektu Generel zásobování vodou, detailní fáze, pro jednotlivé lokality Prahy – podklady [P 24], [P 32], [P 33], [P 34] a [P 37].

Ve zpracovaných dílčích projektech Generelu zásobování [P 48], [P 49], [P 50], [P 51], [P 52] jsou průběžně navrhována optimalizační opatření pro zlepšení tlakových poměrů ve vodovodní síti a úpravy hranic tlakových pásem např. přepojení oblasti kolem Smíchovského nádraží po přestavbě na VDJ Laurová.

Dostavba vodovodního systému je v rozhodující míře realizována v rámci přípravy území pro výstavbu bytových domů a rodinných domů nebo v rámci komplexní bytové výstavby. Výstavba je realizována Ódborem městského investora Magistrátu hl. m. Prahy.

V souvislosti s novou výstavbou bude třeba vytvořit i nová zásobní pásmo. Z hlediska členění pražského vodovodního systému se však jedná o prakticky bezvýznamné zásahy do systému zásobení.

4.4.2.5 REKONSTRUKCE VODOVODNÍCH SÍTÍ

Prudký nárůst podílu vody nefakturované na celkové dodávce pitné vody v první polovině devadesátých let vedl k zahájení prvních kroků, které měly tento vývoj zastavit a zvrátit k lepšímu. Od roku 1996 je postupně realizován souhrn opatření, pro která se používá název „stabilizace zásobních pásem“.

Výsledky provedených opatření, které spočívali především v organizačních opatřeních v systému odečtu vody fakturované, v měření dodávek vody do zásobních pásem a v rychlém odstraňování zjevných poruch, se viditelně promítly do vývoje podílu vody nefakturované v letech 1996 – 2000 a vedly ke snížení jejího objemu na polovinu.

V závěrech „Koncepčního modelu“ bylo na základě provedených rozborů rozhodnuto, že bude do budoucnosti rekonstruováno ročně 1,25 % pražské vodovodní sítě (uvažováno v přepočtené délce potrubí profilu DN 150). Toto rozhodnutí bylo provedeno na základě odhadu reálně dostupných investičních prostředků a rozsahu uzavírek komunikací souvisejících s rekonstrukcími síťí. Rekonstrukce vodovodních řad budou převážně probíhat v centrální Praze a na Zbraslaví, v ostatních povodích podle vývoje poruchovosti, a technického stavu a závěrů detailní fáze Generelu zásobování vodou.

Sweco Hydroprojekt a.s. 66 (108)
ČÍSLO ZAKÁZKY: 11 6162 01 01
ARCHIVNÍ ČÍSLO: 005340/16/1
VERZE: ad
REVIZE: 1
Aktualizace PRVKUK hl.m. Prahy

A.2 Posílení nadobecních systémů vodovodu a kanalizace v kraji

PRVKUK

AKTUALIZACE k roku 2007 - psáno modře
AKTUALIZACE k roku 2010 - psáno červeně
AKTUALIZACE k roku 2016 – psáno zeleně

Pro „Plán rozvoje“ je uvažováno s rekonstrukcí vodovodní sítě v celém posuzovaném období. Za rok bude zrekonstruováno zhruba 58,5 km potrubí (uvažováno v přepracované délce potrubí profilu DN 150).

I nadále probíhají obnovy vodovodní sítě po jednotlivých ulicích i větších oblastí v závislosti na životnosti a poruchovosti vodovodní sítě.

4.4.3 VODOJEMY, ČERPACÍ STANICE, KOLEKTORY

4.4.3.1 VODOJEMY

Posouzení kapacity zásobních vodojemů z hlediska současných a východních potřeb vody bylo provedeno ve vztahu k zásobním pásům, která jsou k nim přiřazena. Posouzení objemů je provedeno na základě požadavků ČSN 73 6650 Vodojemy a rozpracovaných Městských standardů pro vodovody a kanalizace. Základním kritériem pro posouzení objemu zásobního vodojemu byl doporučený objem 70 – 100 % maximální denní potřeby vody. U vodojemů, které jsou současně využívány i pro distribuci vody do dalších vodojemů, bylo vždy uvažováno se zdržením vody 2 hodiny.

Z provedeného posouzení vodojemů, které jsou součástí pražského vodárenského systému, vyplývá, že nebude nutné u současných vodojemů s výjimkou vodního vodojemu Uhlířského ostrova, které jsou současně využívány i pro distribuci vody do dalších vodojemů, bylo vždy uvažováno se zdržením vody 2 hodiny.

Současný technický stav vodojemů je poznamenán nedostatkem finančních prostředků, které byly v minulosti poskytovány na jejich údržbu. Objekty se nerekonstruovaly, opravy byly prováděny omezeně. Z těchto důvodů byl v uplynulých několika letech postupně Pražskými vodovody a kanalizacemi a.s. kontrolovan na kontaktní stav vybraných vodojemů. Při provádění projektové přípravy bylo zjištěno, že za vodojemy je nutné přistupovat k technickým opatřením, která omezuje objem vody v zásobním prostoru.

Přehled rekonstrukcí ve vodojemech, jejichž plánované investiční náklady jsou 50 milionů Kč a více:

- Sanace komor VDJ Laurová v realizaci,

VDJ Rohožník je využíván pro zásobení Úval, které nejsou řešeny v PRVKUK hl. m. Prahy. V investičním plánu PRVKUK hl. m. Prahy není tento vodojem zahrnut.
Sanace komor VDJ Kopanina,
Sanace komor VDJ Hrdlořezy,
Sanace komor VDJ Suchdol,
dostavba VDJ Uhříněves, v realizaci
rekonstrukce VDJ Korunní,
Rekonstrukce komor č. 1 a č. 2 VDJ Novodvorská,
dostavba komory VDJ Mazanka,
nový vodojem Pomezí
Sanace komor VDJ Ladví II

Obecně je možné konstatovat, že provedení oprav či rekonstrukcí v různém rozsahu vyžaduje většina vodojemů, které jsou součástí pražského vodárenského systému.

Objemy zásobních vodojemů jsou dostatečné pro vyrovnání denních nerovnoměrností. V případě navýšení odběrů, zejména pokrývání špiček, potřeby vody pro Středočeský kraj (tzv. metropolitní region) bude třeba zvážit výstavbu nových vodojemů na území Středočeského kraje pro rovnoměrnější odběry z vodovodní sítě hl. m. Prahy.

4.4.3.2 ČERPACÍ STANICE

Posouzení kapacity zásobních čerpacích stanic z hlediska současných a výhledových potřeb vody bylo řešeno obdobně jako u vodojemů. K jednotlivým zásobním čerpacím stanicím byla přiřazena zásobní pásma, do kterých je voda z čerpací stanice čerpána. Posouzení bylo provedeno pro maximální hodinovou potřebu vody vypočtenou z maximální denní potřeby zásobního pásma.

Z provedeného posouzení čerpacích stanic, které jsou součástí pražského vodárenského systému, vyplyvá, že nebude nutné u současných čerpacích stanic ani do budoucnosti uvažovat až na výjimky se zvýšením výkonu (ČS Uhříněves – realizace, ČS Lhotka, ATS Třebotov-části realizováno).

U řady čerpacích stanic je vyšší výkon, který není možné využít. U těchto čerpacích stanic bude nutné přistoupit k technickým opatřením, která výkon sníží na úroveň současných a budoucích požadavků na dodávku pitné vody.

Technický stav čerpacích stanic je jen o málo lepší než technický stav vodojemů. Naprostá většina čerpacích stanic je umístěna buď přímo v armaturních komorách vodojemů a nebo v samostatné objekty umístěných v areálu vodojemu. Pro většinu čerpacích stanic bylo pracovníky Pražských vodovodů a kanalizací a.s. v uplynulých letech provedeno posouzení technického stavu jak technologické tak i stavební části.

Obecně je možné konstatovat, že provedení oprav v různém rozsahu vyžaduje většina čerpacích stanic, které jsou součástí pražského vodárenského systému.

Komplexní obnova objektů se v dlouhodobém horizontu dotkne všech čerpacích stanic a jeho realizace bude znamenat i poměrně velké investiční náklady. Vzhledem k tomu, že financování bude zajišťováno z různých zdrojů a na vypracování projektů se bude podílet několik projektových organizací, je nutné vypracovat zásady a postupy, které bude nutné při rekonstrukcích dodržet.
„Plánu rozvoje“ je uvažováno s tímto rozsahem rekonstrukcí u čerpacích stanic:

- ročně bude uvažováno s rekonstrukcemi 2 – 3 malých čerpacích stanic s celkovými investičními náklady cca 50 -100 mil.Kč,
- ročně bude uvažováno s rekonstrukcí cca 1 - 2 velkých čerpacích stanic, s investičními náklady 100-250 mil.Kč na čerpací stanici.

Přehled rekonstrukcí čerpacích stanic, jejichž plánované investiční náklady jsou 50 milionů Kč a více:
- čerpací stanice Bruska – automatizace ČS pro bezobslužný provoz s místním automatickým provozem a dálkovým dispečerským řízením – v realizaci, dokončeno
- čerpací stanice Flora – automatizace ČS pro bezobslužný provoz s místním automatickým provozem a dálkovým dispečerským řízením, - dokončeno
- ČS Děvín,
- ČS Hrdlořezy v realizaci
- ČS Uhlířské, dokončena I. etapa, pro konečné řešení zpracována DSP
- ČS Malvazinky – v realizaci, dokončeno
- ČS Laděv, v realizaci v rámci vdj. Laděv
- ČS Laurová, v realizaci
- ČS Novodvorská, v přípravě

4.4.3.3 KOLEKTORY

V Praze vyvolaly výstavbu nových podzemních objektů (kolektorů), které jsou určeny speciálně pro společné trasy podzemních vedení, jednak stavební záměry realizované v centru města, které požadovaly posílení kapacit stávajících vedení, jednak výstavba nových sídlišť na okrajích města, budovaných tzv. „na zelené louce“. Výstavba kolektorů v centru města pomáhala řešit problémy s prostorovým uspořádáním uličního profilu přeplněného sítěmi různých funkcí i stáří, včetně problému s neodstraněnými dosloužilými vedeními. Zároveň byla řešena omezení vznikající častými výkopovými pracemi při pokládání nových sítí, nebo opravách a výměnách stávajících.

První, doposud funkční, vodovod byl v Praze do kolektoru, respektive vodovodního podchodu, uložen v roce 1909, a to litinové potrubí DN 650 o délce 120 m u ul. Hybernské po ul. Na Florenci. Další vodovodní podchody se realizovaly v 50. – 60. letech minulého století, zejména v centru města. S nástupem výstavby sídlišť se od 70 - tých let realizovaly sídlištní kolektory v vazbě na technické chodby a suterénní rozvody.

Celková délka kolektorů s provozovanými vodovody v současné době činí:
- 83570 m [P 24] ve správě kolektory Praha,
- cca 5900 m ve správě Pražské vodohospodářské společnosti a.s.
- cca 87 520 m vodovodních řadů ve správě Pražské vodohospodářské společnosti a.s. uloženo v kolektorech.

Celková délka vodovodních řadů uložených v kolektorech je, vzhledem k ne-zcela přesné evidenci obou správců kolektorů, obtížně doložitelná (nedořešené majetkové převody, část vodovodu je v provozu bez kolaudačního řízení atd.). Celkem se tedy jedná o zhruba 90 km kolektorů s v.
Aktualizace PRVKUK hl.m. Prahy

A.2 Popis nábočních systémů vodovodů a kanalizace v kraji

PRVKUK

AKTUALIZACE k roku 2007 - psáno modře
AKTUALIZACE k roku 2010 - psáno červeně
AKTUALIZACE k roku 2016 – psáno zeleně

V sídlištních kolektorech vybudovaných v sedmdesátých letech bude docházet k postupné obnově potrubí z důvodu vysoké poruchovosti a dožití ocelových trub.

4.5 PRŮMYSLOVÝ VODOVOD

Pro zásobení průmyslu se odebírá vltavská voda na Libeňském ostrově a pouze po mechanickém předčištění se rozvádí několika pražským průmyslovým závodům v oblasti Malešic.

Voda je odebírána na základě Rozhodnutí Odboru ochrany prostředí Magistrátu hlavního města Prahy, jako věcně příslušného vodoprávního úřadu podle ustanovení §31 odst. 2 zákona č.131/2000 Sb., o hlavním městě Praze, ve znění pozdějších předpisů a podle ustanovení §106 zákona č.254/2001 Sb. o vodách a o změně některých zákonů ve znění pozdějších předpisů a místně příslušný dle ust § 11 zákona č.500/2004 Sb., správní řád, ve znění pozdějších předpisů k povolení nakládání s vodami, vydaného dne 10. 1. 2007 pod SZn.: S-MHMP 422284/2006/OOP-II/R-345/Ka, dle ust.§ 8 odst.1 písm. a) zákona č. 254/2001 Sb. o vodách a o změně některých zákonů ve znění pozdějších předpisů k odběru povrchových vod z řeky Vltavy (číslo hydrologického pořadí 1-12-01-025) v říčním kilometru 47,6 stávajícím odběrným objektem umístěným na pozemku č. parc. 4008/3, k.ú. Libeň v Praze 8, za účelem zásobování průmyslové oblasti Malešic stávajícím průmyslovým vodovodem v množství:

- Průměrný odběr: 100 l/s
- maximální okamžitý odběr: 480 l/s
- maximální měsíční odběr: 360000 m³/měs
- maximální roční odběr: 3400000 m³/rok

Po povodni v roce 2002 bylo nutné provoz průmyslového vodovodu přerušit. Po řadě jednání a studií, které se problematikou dalšího využití Průmyslového vodovodu zabývaly, bylo rozhodnuto přistoupit k rekonstrukci jeho jižní větvě, severní větev je zrušena. V současné době je připravován projekt rekonstrukce rozvržený do dvou etap v tomto rozsahu:

I. etapa – realizace 2006-7 realizováno
- ČS Libeňský Ostrov,
- část řadu Podvinň Mlýn DN 400,
- zrušení severní větev do Kbel

II. etapa po roce 2008
- ČS Prosek, čerpací stanice je zrušena
- Řad DN 500 ČS Libeňský Ostrov – vdj. Prosek,
- Řad DN 400 vdj. Prosek – vdj. Malešice
- VDJ Prosek
4.6 PŘEDPOKLADY ZÁSOBĚNÍ HL. M. PRAHY PITNOU VODOU DO ROKU 2015 A DÁLE

Pro výhledové zásobení pražské aglomerace bude vhodné zachovat všechny zdroje pitné vody, tj. Káraného, Želivky i Podolí.

Úpravna vody Podolí bude ponechána ve stavu tzv. „studené rezervy“, to znamená odstavení, zakonzervování a uvedení do provozu v případě potřeby. Z dlouhodobého hlediska je to pak strategický význam úpravny vody Podolí pro případy havarijního a nouzového zásobování. Zde je nutné zdůraznit, aby se především Magistrát hl. m. Prahy a orgány města zodpověděně za řízení v době krizových a havarijních stavů, uvědomily svoji spoluodpovědnost za problematiku zásobování pitnou vodou.

Z bilančních výpočtů vyplývá, že bude nutné uvést ÚV Podolí do trvalého provozu přibližně od roku 2030. S ohledem na narůstající potřebu vody ve Středočeském kraji a hl. m. Praze, budou stávající zdroje využívány na hranici svých kapacit.

Úpravnu vody Želivka doporučujeme provozovat, tak aby byla hladina vody v vodárenské nádrži v rozmezí 0 – 5 m od maximální provozní hladiny. Pokud dojde k poklesu hladiny vody v nádrži pod 5 m pod úroveň maximální provozní hladiny, bude, po zvážení hydrologické situace a jakosti vody v nádrži, rozhodnuto o tom, zda se připustí další pokles hladiny nebo zda se odběr sníží a výroba pitné vody bude nahrazena v první řadě z Káraného, a při další potřebě z Podolí.

Úpravnu vody Káraný pak bude za těchto podmínek provozována s výkonem cca 980 - 1950 l/s. Výkon úpravny vody Káraný může ještě do budoucnosti ovlivnit výši doporučeného čerpání pro ochranu zdroje před znečištěním z Milovic. V případě, že se doporučenými průzkumy prokáže, že nebude čerpání nutné nebo jej bude možné významně omezit, bude možné snížit i výkon úpravny vody Káraný.

4.7 NOUZOVÉ ZÁSOBOVÁNÍ PITNOU VODOU

Nouzové zásobování vodou je řešeno ve dvou úrovních:

- zásobování pitnou vodou, které bude řešeno dopravou vody v cisternách nebo v formě balené vody,
- zásobování užitkovou vodou, která nesplňuje některé z parametrů pro vodu pitnou. Rozhodnutí o způsobu užití (pitná / užitková voda) této vody je plné v kompetenci hygienika hl. m. Prahy. V případě rozhodnutí o tom, že se jedná o vodu užitkovou, bude tato voda určena prioritně pro pokrytí hygienických potřeb obyvatelstva, které bude určeno prioritně pro pokrytí hygienických potřeb obyvatelstva a bude možné pro něj podle povahy situace používat vodu z vodovodu, která však nemusí splňovat standardní požadavky na kvalitu pitné vody. Rozhodnutí o přípustné kvalitě užitkové vody je plné v kompetenci hygienika hl. m. Prahy.

Sweco Hydoprojekt a.s.
4.7.1 KONCEPCE SYSTÉMU NOUZOVÉHO ZÁSOBOVÁNÍ PITNOU VODOU PRO KRIZOVÉ PLÁNY

Řešení krizových situací je v kompetenci příslušného správního úřadu a věcně příslušných orgánů a organizací na území kraje. V případě, kdy krizová situace přesáhne rámec jejich působnosti nebo možnosti, řeší situaci vyšší správní orgán (rezortními krizovými štábky, Mezirezortním krizovým štábem, Ústřední povodňovou komisí apod.)

4.7.1.1 ZÁSADY ZABEZPEČENÍ PITNÉ VODY V KRIZOVÝCH SITUACÍCH

Jednotlivé varianty krizových plánů pro nouzové zásobování vodou vycházejí z pravděpodobnosti možných rizik a vzniku krizových situací, jsou hodnoceny jako vysoce aktuální riziko nebo riziko málo pravděpodobné.

Vysoce aktuální rizika vzniku
- živelná katastrofy,
- průmyslové katastrofy,
- ekologické havárie,
- šíření epidemií.

Málo pravděpodobná rizika
- diverzní činnost,
- hrozba vojenského napadení.

Hlavní zásady pro zabezpečování obyvatel pitnou vodou:
- systém nouzového zásobování vodou umožňuje zásobování obyvatelstva potřebným množstvím vody. Kvalitu dodávané vody určuje hygienický orgán, tak aby riziko ohrožení zdraví lidí, kvalitě dodávané vody, bylo minimalní,
- systém nouzového zásobování vodou za krizových situací je součástí krizového plánu,
- vyhlášením krizového stavu se aktivuje systém nouzového zásobování pitnou vodou s využitím stávajícího vodovodního systému v co největší možné míře. Neovlivní-li krizová situace stávající systém zásobování vodou, probíhá zásobování pitnou vodou v obvyklém rozsahu,
- při řešení krizových situací jsou při zásobováním vodou upřednostňovány podzemní zdroje vody před povrchovými zdroji vody. Podzemní zdroje mají vyšší odolnost před narušením jejich původních vlastností,
- nouzové zásobování pitnou vodou se zahájí nejpozději do pěti hodin od ukončení dodávky vody,
- do nejvíce postižených oblastí je pro první čtyři dny krizové situace třeba zajistit dodávky balené pitné vody. Pro další časový horizont se zajistí postupná obnova stávajícího systému zásobování pitnou vodou.

Technická opatření pro jednotlivé vodovody a vodovodní systémy včetně oblastí bez vodovodů je třeba určit s ohledem na typy krizových situací v součinnosti provozovatelů vodovodů s orgány odborné Služby nouzového zásobování vodou podle konkrétních
požadavků příslušných správních orgánů. Při zpracovávání plánů krizové připravenosti je třeba přihlédnout k následujícím požadavkům a kritériím:

- ke stávajícímu systému zásobování vodou,
- k dostupnosti vodních zdrojů – kvalitě vody ve zdrojích, kvalitě zabezpečení proti znehodnocení, dopravní dostupnosti, ke kapacitě,
- k struktuře osídlení – rozptylená zástavba nebo sídlištní zástavba,
- k prioritním skupinám obyvatel:
 - ústavy sociální péče,
 - nemocnice,
 - potravinářský průmysl,
 - záchrané složky apod.

V úvahu přicházejí následující možnosti řešení krizové situace:

- propojení sítě na jiný zdroj vody,
- omezení odběru vody ze sítě vyhlášením regulačních stupňů,
- instalace náhradních (rezervních) zdrojů,
- dovoz vody do vodojemu,
- rozvoz vody do míst spotřeby cisternami případně dovoz balené vody
- využití náhradní technologické úpravy vody

Kvalita a množství vody za krizové situace může být odlišná od požadavků na kvalitu vody pitné. Nárokům na kvalitu pitné vody vyhovuje voda balená včetně kysličníku.

Základem materiálního zajištění pro zásobování vodou za krizových situací jsou v prvé řadě vlastní disponibilní prostředky provozovatelů vodovodů používaných v případech poruch a havárií na vodovodních sítích.

Pro zajištění funkčnosti systému nouzového zásobování vodou za krizových situací pro potřeby provozovatelů vodárenských zařízení a orgánů Služby nouzového zásobování je třeba zabezpečit pohotovostní zásoby. Pohotovostní zásoby a prostředky nad rámec odstraňování běžných poruch a havárií jsou uloženy ve státních hmotných rezervách a jedná se o následující prostředky:

- pro rozvoz vody (cisterny automobilové, přívěsné, kontejnerové),
- pro úpravu vody a dekontaminaci vody včetně provozního materiálu,
- čerpadla,
- náhradní – mobilní zdroje elektrické energie,
- mobilní trubní rozvody – suchovody,
- pro čerpání a dopravu kontaminované vody,
- pro zjišťování kontaminace vody a půdy,
- pro vyhledávání nových zdrojů,
- pro obnovu vodních zdrojů a zřizování jímacích objektů.
Prostředky ze státních rezerv určené pro nouzové zásobování pitnou vodou jsou uvolňovány po vyhlášení krizového stavu a jsou převáděny pro potřeby regionů v souladu s krizovými plány krizové připravenosti odbornými orgány resortu zemědělství v součinnosti s příslušnými správními úřady. Krizové situace zasahující území několika regionů jsou řešeny meziobecným krizovým štábem a o použití prostředků ze státní rezervy rozhoduje orgán krizového řízení MZe ČR. Pro potřeby krizových plánů je třeba smluvně zajistit u výrobců a distributorů balené pitné vody její přednostní dodávku do postižených oblastí.

Organizační zabezpečení systému nouzového zásobování obyvatel pitnou vodou za krizových situací vychází z platných právních norm, smluvních vztahů a požadavků. Na řešení krizových situací se podílejí všechny stupně veřejné správy v souladu s vypracovanými krizovými plány upřesňovanými podle konkrétní situace a spolupracují s hlavními provozovateli vodovodů, orgány hygienické služby, obcemi apod.

Služba pro nouzové zásobování vodou je zřízena pro zabezpečení nouzového zásobování pitnou vodou a nahrazuje dosavadní Vodotechnickou službu. Služba NZV bude ustanovena v rámci resortu MZe ČR a na regionálních úrovních. Základ pro tvoření této služby bude tvořen provozovateli vodovodních systémů určených subjekty hospodářské mobilizace.

Hlavní úkoly Služby pro nouzové zásobování vodou
- zabezpečení nouzového zásobování vodou v krizových situacích,
- realizace zabezpečovacích a likvidačních prací na vodohospodářských zařízeních sloužících pro zásobování vodou,
- preventivní opatření k zabránění úniků závadných látok do podzemních a povrchových vod a půdy,
- vyhledávání nových vodních zdrojů a zřizování jímacích objektů pro nouzové zásobování vodou.

4.7.2 ŽDROJE PRO NOUZOVÉ ZÁSOBOVÁNÍ PITNOU VODOU

Vhodným zdrojem pro nouzové zásobování pitnou vodou v hl. m. Praze je úpravna vody Káraný, kde je dostatečná kapacita v podzemních zdrojích získávaných přirozenou, případně i umělou infiltrací. Dopravu vody, která bude zajišťována cisternami, bude třeba kombinovat s dodávkou balené pitné vody.

V tabulce č. 5 jsou uvedeny údaje o potřebné dodávce vody pro nouzové zásobování pitnou vodou. Výpočet je proveden pro předpokládaný počet obyvatel v roce 2015, tj. 1 206 000 trvale bydlících obyvatel.
Aktualizace PRVKUK hl.m. Prahy

A.2 Popis nadobecních systémů vodovodů a kanalizací v kraji

PRVKUK

AKTUALIZACE k roku 2007 - psáno modře
AKTUALIZACE k roku 2010 - psáno červeně
AKTUALIZACE k roku 2016 – psáno zeleně

Přehled spádových obcí ke zdrojům určeným pro nouzové zásobování pitnou vodou v hl. m. Praze

Tabulka č. 5

<table>
<thead>
<tr>
<th>Číslo spádové obce</th>
<th>Spádová obec</th>
<th>Denní potřeba NZV 24 m³/den (l/s)</th>
<th>Rozvoz vody cisternami</th>
<th>Poznámka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Číslo spádové obce</td>
<td>Spádová obec</td>
<td>48099</td>
<td>ano</td>
<td>balená voda</td>
</tr>
<tr>
<td>Hl. m. Praha</td>
<td></td>
<td>18750 (217)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>19012 (220)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

V úpravě vody Káraný bude třeba realizovat technická opatření, která umožní plnění většího počtu cistern současně. Řeší bude třeba i způsob transportu cistern z Káraného do Prahy, protože především v okolí úpravny vody Káraný, nejsou komunikace dostatečně kapacitní pro vysoké dopravní zatížení. Doporučujeme zvážit, zda v případě, že bude funkční čerpací stanice v úpravě vody Káraný, nezajistit stáčení i na trase výťalačních řad v areálu vodojemů Flora, u Kýského užlu a ve vodojemu Ládví. Pro případ výpadku elektrické sítě budou u vybraných vodárenských objektů (vodojemy, čerpací stanice) a objektů čistírenských (pobočné čistírny odpadních vod, čerpací stanice) instalovány náhradní zdroje pro výrobu elektrické energie.

4.7.3 NOUZOVÉ ZÁSOBOVÁNÍ UŽITKOVOU VODOU

Nouzové zásobování užitkovou vodou bude zajišťováno v závislosti na rozsahu krizové situace. Užitková voda bude v krizových situacích zajišťována především pro zajištění základních sociálních a hygienických potřeb obyvatel. Na druhé místě je pak zajištění vody pro ostatní potřeby, případně pro ostatní odběratele.

Podmínkou není zajištění jakosti požadované pro pitnou vodu. Rozhodnutí o tom, v jaké kvalitě bude voda dodávána, je v kompetenci hygienika hl. m. Prahy, který se rozhoduje podle vzniklé krizové situace.

Pro potřeby nouzového zásobování užitkovou vodou bude možné využívat:
- existující vodovodní systém pražského vodovodu,
- v případě, že bude do vodovodu přiváděna voda i z jiných zdrojů, je třeba ve vodovodní síti vzdy důsledně oddělit provoz obou zdrojů. Po ukončení krizové situace bude vodovodní síť vyčištěna,

24 Při potřebě vody 15 l/os×15
25 Při kapacitě jedné cisterny 10 m³ je možné odhadnout, že pro dopravu tohoto množství vody bude třeba cca 400 cistern.

Sweco Hydroprojekt a.s.
Aktualizace PRVKUK hl.m. Prahy

A.2 Popis nadobecných systémů vodovodů a kanalizací v kraji

PRVKUK

Aktualizace k roku 2007 - psáno modře
Aktualizace k roku 2010 - psáno červeně
Aktualizace k roku 2016 – psáno zeleně

- zdroje na území hl. m. Prahy pro pivovary Braník, Smíchov a Holešovice. K dispozici musí být čerpací technika, kterou bude možné zajistit odběr užitkové vody z těchto zdrojů,
- vodoteče a rybníky nacházející se v Praze. Využití je možné podle povahy krizové situace a důležitou podmínkou je, že povrchová voda není kontaminována. Se souhlasem hygienika je možné přípustit i čerpání povrchové vody do vodovodního systému ve městě a zajistit tak přívod užitkové vody pro případy, že by bylo poškozeny zdroje pitné vody.

4.8 VYMEZENÍ REALIZAČNÍCH PREFERENCÍ

Priority pro výstavbu vodovodů byly definovány na podkladě „Metodického pokynu pro zpracování Plánů rozvoje vodovodů a kanalizací kraje“ [P 4] a na základě jednání s objednatelem.

Pro vodovody byly schváleny priority výstavby v tomto znění:

1. zabezpečení jakosti vody ve zdrojích, kde jejich současný stav může ohrozit zdravotní stav obyvatelstva (jakost pitné vody) Opatření se dotýkají především zdrojů a úpraven vody. Sledováno je dodržování vyhl. č. 252/2004 Sb., ve znění pozdějších předpisů. Opatření jsou navrhována u všech zdrojů, či úpraven vody, kde byly na základě poskytnutých podkladů zjištěny nedostatky při dodržování některého z ukazatelů jakosti kvality vody. Do skupiny jsou zpravidla zahrnuty investice zařazené v Regionálních plánech implementace a realizované v rámci některých z projektů (např. ISPA apod.) realizováno do roku 2008

2. nové stavby, případně náhrada staveb, jejichž technický stav ohrozuje provoz systému, Do skupiny jsou zařazeny nové investice do systému dopravy a zásobení vodou, případně i nové zdroje pitné vody. Upřednostňovány jsou opět stavby zařazené do RPI. Do skupiny jsou zařazeny stavby v současnosti rozestavěné nebo připravené k realizaci – zčásti realizováno.

3. rekonstrukce vodovodních sítí a objektů, průběžně v rozsahu 1,25 % potrubí DN 150

4. výstavba nových částí vodovodu, Do skupiny jsou zařazeny stavby, které řeší zlepšení technického stavu infrastruktury, posílení vyšší zabezpečenosti dodávky vody a další opatření. realizováno do roku 2015

5. stavba vodárenských zařízení vedoucí ke zvýšení technické úrovně současného provozu Do skupiny jsou zařazeny stavby, které řeší zlepšení technického stavu infrastruktury, posílení vyšší zabezpečenosti dodávky vody a další opatření. realizováno do roku 2020

26 Problematika priorit výstavby byla uzavřena na jednání koordinační komise dne 27.června 2003.

Sweco Hydroprojekt a.s.
Aktualizace PRVKUK hl.m. Prahy

A.2 Popis nadobecních systémů vodovodu a kanalizace v kraji

AKTUALIZACE k roku 2007 - psáno modře
AKTUALIZACE k roku 2010 - psáno červeně
AKTUALIZACE k roku 2016 – psáno zeleně

Zařazení jednotlivých staveb vodovodů do časových období je uvedeno pro vodovody v tabulkách XI a XIII. Samostatně pro vodovody jsou v příloze uvedeny grafy č. 6 a 7 vyjadřující potřebný roční objem investičních prostředků.

27 Databáze, tabulková část a grafická část není součástí aktualizace 2010.
5 ODVEDENÍ A ČIŠTĚNÍ ODPADNÍCH VOD

5.1 PRODUKCE ODPADNÍCH VOD

5.1.1 VÝPOČET PRODUKCE ODPADNÍ VOD

Upřesnění vývoje produkce odpadních vod a znečištění, tj. nejdůležitějších hodnot pro stanovení způsobu nakládání s odpadními vodami, je potřeba rozdělit do dvou částí - na výpočet produkce odpadních vod komunálního charakteru (tj. produkce odpadních vod od trvale nebo přechodně žijících obyvatel) a na stanovení produkce odpadních vod ze sektoru průmyslu, zemědělství a vybavenosti.

5.1.1.1 VÝPOČET PRODUKCE ODPADNÍCH VOD OD OBYVATELSTVA

Základním předpokladem, ze kterého je odvozen výpočet produkce odpadních vod, je úvaha, že v převážné části všech sídelních celků je vyprodukované množství odpadních vod od obyvatelstva shodné s množstvím spotřebované pitné vody (tzn. že specifická produkce odpadních vod je shodná s hodnotou VFD). Současně je však údaj VFD porovnáván s předpokládanou minimální hodnotou specifické produkce odpadních vod. Stanovení specifické produkce odpadních vod vychází z Generelu odvodnění hlavního města Praha:

<table>
<thead>
<tr>
<th>Obor odpadních vod</th>
<th>Specifická produkce odpadních vod</th>
</tr>
</thead>
<tbody>
<tr>
<td>u trvale žijících obyvatel napojených na kanalizaci, septik nebo čistírnu odpadních vod</td>
<td>180-160 l/os×den</td>
</tr>
<tr>
<td>u trvale žijících obyvatel s akumulací odpadních vod v bezodtokých jímkách a s následným odvozem na ČOV nebo zemědělské pozemky</td>
<td>120 l/os×den</td>
</tr>
</tbody>
</table>

K vzájemnému ovlivňování hodnot minimální specifické produkce odpadních vod obyvatel a specifické potřeby vody fakturované pro domácnosti nás vedou poznatky zjištěné při vyhodnocování vzájemného vztahu mezi těmito údaji. S charakteristickým poklem potřeby pitné vody v posledních letech (způsobeným postupným zvyšováním ceny vodného) v žádném případě nekoresponduje pokles produkce odpadních vod. Vodné a stočné je totiž zásadně odvozováno od množství odebrané vody z centrálního zásobování, které je sledováno vodoměry. Tento trend je v této studii předpokládán po celé sledované období. Neméně důležitou hodnotou pro optimální návrh způsobu likvidace odpadních vod je i stanovení produkce znečištění (charakterizovanou ukazatelem BSK₅) v jednotlivých, výše specifikovaných kategoriích:

<table>
<thead>
<tr>
<th>Obor odpadních vod</th>
<th>Specifická produkce znečištění</th>
</tr>
</thead>
<tbody>
<tr>
<td>u trvale žijících obyvatel napojených na kanalizaci, septik nebo čistírnu odpadních vod</td>
<td>60 g/os×den</td>
</tr>
<tr>
<td>u trvale žijících obyvatel s akumulací odpadních vod v bezodtokých jímkách a s následným odvozem na ČOV nebo zemědělské pozemky</td>
<td>20 g/os×den</td>
</tr>
</tbody>
</table>

Produkce dalších ukazatelů znečištění je odvozena podle specifických hodnot vztažených k tzv. ekvivalentnímu obyvateli. Jednotlivé hodnoty jsou následující:

- NL 55 g/os×den
- CHSK 110 g/os×den
- N₅celk. 8 g/os×den
- P₅celk. 2 g/os×den
Další důležitou hodnotou pro stanovení návrhu likvidace odpadních vod je produkce znečištění (charakterizovaná ukazatelem BSK). Je uvažováno 60 g/os×den.

3.1.1.1 VÝPOČET PRODUKCE ODPADNÍCH VOD A ZNEČIŠTĚNÍ Z PRŮMYSLU, ZEMĚDĚLSTVÍ A VYBAVENOSTI

Výpočet produkce odpadních vod z průmyslu a zemědělství je převzat z Generelu odvodnění a je definován hodnotou vztaženou k ekvivalentnímu obyvateli ve výši 60 l/(os×den) na jednu pracovní příležitost.

5.2 KANALIZACE – SOUHRN SOUČASNÉHO STAVU

5.2.1 KANALIZAČNÍ SÍŤ

S vytvořením Velké Prahy v roce 1920, kdy byla k Praze připojena rozsáhlá oblast aglomerovaných měst a obcí, vznikla i potřeba podstatného rozšíření stokové sítě, a proto v roce 1920 vypracoval Ing. Máslo nový návrh na ideové řešení pražské kanalizace pro výhled osídlení 1700000 obyvatel a specifické množství odpadních vod 200 l/(obyv×den).

Nová koncepce podle návrhu Ing. Másla nebyla však důsledně realizována. Výstavba města probíhala nesouzavrně, stejným způsobem se rozšířovala i kanalizační síť, bez zřetele na kapacitní možnosti dříve provedených sběračů. V podstatě docházelo k postupnému prodlužování sběračů kmenových stoky A udolím Botiče (sběrač CXII), do údolí Kunratického potoka (sběrač CXXVII) a k výstavbě nových kmenových stok C a D (Dejvice, Břevnov). Na pravém břehu Vltavy byla vybudována kmenová stoka E, samostatně vyústěná do Vltavy proti dnešním ÚČOV v Bubenči, postupně prodlužovaná údolím Rokytky (sběračeCCI, CCII) až do Hrdlořez a Hloubětina. Napojování nových zdrojů odpadních vod začalo způsobovat přetěžování některých tratí sběračů.

V roce 1959 bylo zpracováno první poválečné generelní řešení pražské stokové sítě (Státní projektový ústav pro speciální stavby v Praze, Ing. Staněk). Návrh vycházel v souladu
s tehdejšími předpoklady územního plánování s výhledovým počtem obyvatel města 1100000 obyvatel a specifickou hodnotou splaškového odtoku 400 l/(obyv×den). Nejúděležitějším navrhovaným opatřením je záměr na řešení problematiky nejzatíženější kmenové stoky A odelehnění sběračů CXXVII a CXXII na Výtoni do nového sběrače II.

V 60. letech došlo k zásadní změně v urbanistické koncepci Prahy, kde byla opuštěna zásada, že Praha nemá výrazněji překročit počet 1 mil. obyvatel. Rychlý nárůst výhledového počtu obyvatel a požadavků na zvyšování standardu bydlení vedly k rozhodnutí o rozsáhlé bytové výstavbě a s ní související dovolené výstavbě objektů výbavenosti a výroby. Nová sídlitelnost a infrastruktura byla budována na stále odlehlejších plochách, jejichž potřeba pro novou výstavbu si vyžádala rozšíření správního území města v roce 1968 a další v roce 1974.

K odstranění nejtíživějších závod na stokové síti navrhli tento generel výstavbu nové kmenové stoky K, probíhající od jihu města k ústřední čistírně odpadních vod v Bubenči a podstatně přebírající funkci nedostatečně kapacitní kmenové stoky A jako dosavadní páteřní stoky pražské kanalizace. Na novou kmenovou stoku K, vybudovanou v 70. letech, byla napojena nová sídlitelnost v jižní oblasti města (prostřednictvím dalších křížových sběračů – Pankrácké štoly, sběrače P, Modřanského sběrače CLX, sběrače Lhotka – Libuš XXX, levobřežního Kunratického sběrače CXXVIIa). Zároveň byla na tuto stoku přepojena starší stoková síť údolí Kunratického potoka (sběrač CXXVIIb), Botiče (sběrač CXII), Motolského potoka (sběrač I a M) a vlastního údolí Vltavy nad Vyšehradem (pravý břeh) a nad Petřínskými sady (levý břeh). V důsledku těchto opatření bylo povodí kmenové stoky K prakticky omezeno na svůj někdejší rozsah z počátku 20. století a odstraněny nejtíživější závady na stokové síti v historickém jádru města.

Generel Hydroprojektu Praha přirozeně pozornost řešení problematiky další nejvíce přetížené kmenové stoky E. Byla zde navržena výstavba nové souběžné stoky E, kterou bylo navrženo připojení celé povodí Rokytky nad Podvinným mlýnem a jednotnou kanalizaci sídlitelného komplexu Severní město (Prosek, Řídká, Kobyly, Bohnic). Kmenová stoka F pak byla v následujícím období postupně vybudována, avšak bez původně zamýšleného přepojení na ÚČOV novou shybou pod Vltavou z This is the end of the preview text.
(výstavba nové mlékárny v Kyjích a sídliště Černý most) byla kmenová stoka F prodloužena do Kyjí a následně vybudována i nová tzv. Hrdlořežská štola mezi údolím Rybolty ve Vysočanech a Hrdlořezích. Postupně byly vybudovány i počáteční úseky stok G a H, kterými se kmenová stoka F měla větvit ve směru ke shora uvedeným sídelním útvarům.

Na druhé straně v době zpracování generelu z roku 1988 bylo všechna zásadní rozhodnutí o strukturálních změnách kanalizačního systému a podmíněných investicích pro stabilizovanou sídlištní výstavbu již realizováno nebo bylo ve stadiu investiční přípravy (včetně souboru staveb NČOV). Nově byly v generelu z roku 1988 řešeny především rekonstrukce kmenové stoky B (Karlín – Holešovice), sběrače M (Kotlářka – Kartouzká) a výstavba nového sběrače Folimanka po pravém břehu Botiče (Výtoň – Vršovická ul.). Žádné z těchto opatření nebylo dosud realizováno, s výjimkou úseku stoky B v Pobřežní ulici.

Další rozvoj stokového systému do území okrajových obcí, připojených k hl. m. Praze v letech 1968 a 1974 byl zde předpokládán zhruba v intencích předchozích generelů a studií, ovšem v současné době.
Aktualizace PRVKUK hl.m. Prahy

A.2 Popis nadobecných systémů vodovodů a kanalizace v kraji

PRVKUK

AKTUALIZACE k roku 2007 - psáno modře
AKTUALIZACE k roku 2010 - psáno červeně
AKTUALIZACE k roku 2016 – psáno zeleně

ze stejných metodických principů jako generel z roku 1988. V otázce nakládání s dešťovými
vodami je zde věnována velká pozornost technické povrchové retenci jako prvku regulace
dešťového odtoku a návrhu zařízení mechanického předčištění.

Po roce 1989 došlo k zásadním změnám podmínek pro prosazování jednotné koncepce
kanalizačního systému na území hlavního města Prahy. V důsledku omezení platnosti
územního plánu a větší samostatnosti místních úřadů se prosazuje snaha o co nejįenodušší
realizaci kanalizace v nově odvodňovaných územích.

Současně se zvětšují nároky na ekologickou přijatelnost navrhovaných řešení, takže je třeba
vyvážit vzájemný vztah mezi technickoekonomickými možnostmi výstavby kanalizace a
zatížením vodních toků odpadními vodami. Za odpadní vody je z dešťových vod považován
jejich znečištěný podíl, který má být odváděn do splaškové kanalizace, případně vypouštět do
vodních toků přes zařízení mechanického předčištění. Neznečištěné dešťové vody je nutno
separovat a za příznivějších podmínek na místě zasakovať, nebo odvádět bez předčištění
přímo do recipientů. Cílem řešení přitom musí být co nejmenší ovlivnit vodní bilance nově
urbanizovaných povodí. Obecně je třeba návrh dešťové kanalizace provádět tak, aby průtoky a
využíti stok byly rovnoměrnější a využívat k tomu prvky regulace dešťového odtoku.

Převážná část stávajícího systému kanalizace na území hlavního města Prahy je jednotná
kanalizace, v okrajových částech, zejména na některých sídlištích je kanalizace oddílná.

V okrajových částech dochází k rozšíření odkanalizování pomocí čerpacích stanic odpadních
vod. V roce 2016 je jich v provozu již přes 300. Problemem je šíření zápachu při přechodu
výtlaku do gravitční kanalizace. Mnoho čerpacích stanic nebylo navrženo s
bezpečnostním přepadem a hrozí zde při výpadku proudu nebo poruše / ucpání čerpadel až krizová situace.

Následující popis dílčích povodí jednotlivých kmenových stok je souhrnem pro tato povodí.

Povodí kmenové stoky A

Hlavní sběrače povodí

Dílčí povodí odvodňované kmenovou stokou A, původně přestavovalo plošně nejrozšáhlejší a
počtem připojených obyvatel nejvýznamnější povodí pražské kanalizace.

Po vybudování nové páteřní kmenové stoky K došlo k podstatnému zmenšení plochy povodí
kmenové stoky A. Na kmenovou stoku A zůstal napojen celý střed města na pravém břehu
Vltavy včetně okrsku Vyšehrad, odvodňovaný sběrači III, IV, V, VI, VII a VIII. Ze sběrače
CXXXVII zůstal v povodí stoky A jen jeho dolní úsek mezí Jiráskovým náměstím a jižní hranicí
Vyšehradu. Sběrač CXII byl na Výtoni přepojen do kmenové stoky K a do povodí kmenové
stoky A a z něj nyní náleží jen jeho nejspodnější úsek v ul. Podskalské a Gorazdově. Jeho
prostřednictvím je do stoky A nadále odvodňována jižní část Nového Města po ul. Svobodovu.

Na levém břehu Vltavy je po přepojení sběračů II a I na novou kmenovou stoku K nadále
odvodňována do povodí kmenové stoky A dolní část povodí využívaných sběračů severně od ul.
Kořenského – Zubatého. Do povodí kmenové stoky A na levém břehu nadále patří malý okrsek

28 Dle podkladu P 27 (vyhláška 268/2009) se odvádění srážkových vod zajišťuje přednostně
zasakováním.
v severní části Smíchova, území Malé Strany a převážná část Hradčan včetně areálu Pražského hradu.

Stáří a stav kanalizace

Povodí kmenové stoky B

Hlavní sběrače povodí

Povodí kmenové stoky B je vzhledem k ÚČOV součástí dolního pásma pražského stokového systému, odkud jsou odpadní vody přečerpávány na zhlaví čistírny čerpací stanicí dolního pásma. Kromě nízko položených částí města – Karlína, dolního Nového města severně od ul. Hybernské a Holešovic, odvodňuje tato kmenová stoka též relativně výše položené území Letné a vysoko položené území Žižkova (bez jeho východní části) včetně okrajových částí Vinohrad a Strašnic (část zástavby na Třebešíně).

Stáří a stav kanalizace

Povodí kmenové stoky C

Hlavní sběrače povodí

Povodí kmenové stoky C náleží hornímu pásmu pražské kanalizace. V současné době je již uzavřené okolními povodími dalších kmenových stok a sběračů, takže jeho plošný rozsah je již definitivní. Zahrnuje rozsáhlé území v severozápadní oblasti Prahy, do něhož patří Břevnov.
Aktualizace PRVKUK hl.m. Prahy

A.2 Popis nadobecních systémů vodovodů a kanalizací v kraji

AKTUALIZACE k roku 2007 - psáno modře
AKTUALIZACE k roku 2010 - psáno červeně
AKTUALIZACE k roku 2016 – psáno zeleně

včetně okrsku Malého Břevnova a jižní části sídliště Petřiny, převážná část Střešovic a Bubenče a části Dejvic a Hradčan.

Stáří a stav kanalizace

Povodí kmenové stoky D

Hlavní sběrače povodí

Do povodí kmenové stoky D patří severozápadní okrajové území souvislé zástavby hlavního města Prahy, zahrnující velkou část Dejvic, Vokovic, Veleslavín, Liboce, Ruzyně, většinu Zličína, menší část Střešovic, Břevnova, Bubenče a severozápadní část Řep.

Soustavná kanalizace byla v povodí stoky D budována později než v centrální oblasti města a její výstavba probíhá dodnes. Značné velký je podíl stok, vybudovaných v poválečném období a v době rozmachu sídlištní výstavby. Nevyhovující síť provizorní (povrchové) kanalizace je dosud v provozu hlavně na území Horní Liboce, ale též ve vesnických jádřech připojených obcí.
Povodí kmenové stoky E

Hlavní sběrač povodí

Do povodí kmenové stoky E původně náležela celá severovýchodní část Prahy na pravém břehu Vltavy a v údolí Rokytky a jejích přítoků. Toto území zahrnovalo Troju, Bohnice, Čimice, Kobylysi, Štětí, Prosek, Libeň, Vysočany, Hloubětín, Hrdlořezy, Malešice včetně severní části průmyslového území a severovýchodního okrsku sídliště, východní část Žižkova a menší část Strašnice. Kostru tohoto povodí tvořila kmenová stoka E a sběrač CCI, CCII na obou březích Rokytky.

Po vybudování nové kmenové stoky F byl rozsah povodí kmenové stoky E oproti původnímu stavu radikálně zmenšen. Toto povodí zahrnuje:

- Část povodí pravobřežního sběrače podél Rokytky CCII v jeho dolním úseku mezi Podvinným mlýnem a spojením se sběračem CCI zhruba po trasu kmenové stoky F, na kterou byly přepojeny přítoky z území Proseka (OK 13E Prosecká) a Horní Libně (OK 11E Primátorská, OK 15E Fr. Kadlec).

- Úzký pruh území na pravém břehu Vltavy podél tras vlastní kmenové stoky E v Povltavské ul., ohraničený polohou oddělovačů na přítocích z výše položených území severně od Vltavy (Holešovičky, Trojská, Bohnice), přepojených na kmenovou stoku F. Do povodí kmenové stoky E však nadále patří celé povodí Střížkovského sběrače, napojeného přes deštový oddělovač 7 E Povltavská.

Stáří a stav kanalizace

Kmenová stoka E byla vybudována v l. 1935 - 1939, připojení na ÚČOV v r. 1964, kruhový profil, železobetonové troby Via DN 1500 a 1900. Stavební stav je úměrný délce provozu 60 let, hranice teoretické životnosti je překročena, doporučuje se podrobný průzkum, který nelze zatím uskutečnit pro vysoký stav hladiny a nánosu. Rekonstrukci či opravě (například vyvložkováním) se nelze vyhnout v horizontu 10 - 15 let.

V oblasti Dolní Libně, která zůstala napojena na systém kmenové stoky E, je zčásti provozována tzv. stará kanalizace. Původně byla určena ke zrušení v rámci plošné asanace tohoto území, se kterou se již nadále neuvažuje. Rovněž stáří soustavné kanalizace, vybudované v prvních desetiletích tohoto století již dosahuje hranice ekonomické životnosti. Výjimkou je pouze nejsnadnější úsek sběrače CCII, vybudovaný až v 70.letech.

Povodí kmenové stoky F

Hlavní sběrače povodí

Kmenová stoka F byla v poválečných studiích a genelech navržena za účelem maximálního odlehčení přetížené kmenové stoky E, z jejíhož povodí převzala jeho převážnou část, především výše položené oblasti Severního města a celé povodí Rokytky nad Podvinným mlýnem. Původně byla koncipována jako sběrač horního horizontu ÚČOV, po rozhodnutí o výstavbě nové ÚČOV severně od Prahy nebyla však tato koncepce realizována do důsledků. Tepře po roce 1990 bylo provedeno její samostatné připojení na ÚČOV s vlastní čerpací stanicí do úrovně stok horního pásma.

S rozšířením správního území hlavního města Prahy a urbanistickými záměry na mohutnou sídlištní výstavbu v povodí Rokytky a Říčanského potoka se význam nové kmenové stoky F dále posílil. Byla proto dále prodlužována až do míst, kde bylo navrženo její rozvětvení do sběračů G a H pro území v povodích obou zminěných potoků. Z obou těchto sběračů byly realizovány jen jejich krátké dolní úseky v dimenzích podle dobových předpokladů.

Povodí kmenové stoky F v současné době zahrnuje oblast Severního města (Bohnice, Čimice, Kobylisy, Řádlice, Střížkov, Prosek), území Libně při ul. V Holešovičkách, Horní Libeň, Vysočany, Hloubětín, Hrdlořezy, Kyje, Hostavice, Dolní Počernice, Štěrboholy, Malešice včetně severní části průmyslového území a severovýchodního okrsku sídliště, východní část Žižkova se sídliště Jarov a Chmelnice a menší část Strašnic.

Stáří a stav kanalizace

Kmenová stoka F byla vybudována v l. 1976 - 1987, jako kruhový profil DN 3200, konstrukce beton a železobeton s vnitřním obkladem kameninovými tvářnicemi po celém profilu. Stavebně i provozně je bez problému.

Stoková síť velmi rozsáhlého a postupně urbanizovaného povodí vykazuje značně rozdílné stáří. Nejstarší stoky se vyskytují v území původně napojeném na kmenovou stoku E, především v okrskách Horní Libně, dále kolem ul. V Holešovičkách, v Kobylisích, Vysočanech, Hloubětíně. Novější stoková síť byla realizována při výstavbě sídliště (Bohnice, Čimice, Kobylisy, Řádlice, Prosek, Malešice, Hloubětín, Lehovec, Černý most a dalších) a výstavbě infrastruktury v okrajových obcích (Malešice, Štěrboholy, Kyje, Hostavice, Dolní Počernice).

Povodí kmenové stoky K

Tato kapitola je zpracována po jednotlivých dílčích povodích hlavních sběračů, které jsou přítoky kmenové stoky K. Popis kmenové stoky K je v závěru této kapitoly.
Dílčí povodí sběračů I a M

Hlavní sběrače povodí

Stáří a stav kanalizace

Stav sběrače M – Motolský vybudovaný včetně zaklenutí Motolského potoka v I. 1908 - 1911. Vlastní sběrače po obou stranách potoka jsou zděné vejčité profily I. třídy PN, stavební stav poměrně dobře s lokálními poruchami v klenbě v oblasti Buďánka (důsledek malého krytí).

Dílčí povodí sběrače P

Hlavní sběrače povodí

Území v povodí Dalejského potoka bylo před výstavbou kmenové stoky K a sběrače P součástí širšího povodí levobřežního sběrače II, jehož kapacita však byla pro rozvoj zástavby v tomto území zcela nedostatečná. Dnes tvoří horní úsek tohoto sběrače, odvodňující nadále svoje původní povodí na levém břehu Vltavy a v dolní části údolí Dalejského potoka (Hlubočepy a Řeporyje) převážně s jednotnou kanalizací, jeden z přítoků sběrače P.

Stáří a stav stok

Sběrač II je stavebně i přes překročenou životnost v relativně dobrém stavu, lokální problémy zejména ve vstupních šachtách, vliv dopravy. Sběrač P byl vybudován v l. 1980 - 1985, je betonové a místy železobetonové konstrukce s obkladem spodní poloviny profilu kameninovými tvárnicemi, vetši sklon v horní položině sběrače. Stavebně neporušená konstrukce, lokální problémy s vnitrním obkladem.
Stoková síť v povodí sběrače II a na území Jinonic je rovněž poměrně stará až na případ novějších dostavby či rekonstrukce náhradou za stoky tzv. staré kanalizace. Ta je však v řadě okresků dosud využívána. V nových sídlištích ve vlastním povodí sběrače P a v povodí sběrače Q není stoková síť starší než řádově 20 let.

Dílčí povodí sběračů CXII a Solidarita

Hlavní sběrače povodí

Stárí a stav stok

Sběrače CXII, CXIIa, CXIIb, CXIIc, CXIIg byly vybudovány z rozhodující části v 1. polovině 20. století a dosahují tak hranice ekonomické životnosti. Sběrače jsou v minimálních sklonech, stavebně v relativně dobrém stavu, lokální poruchy ve vstupních šachtách zejména v tramvajovém tělese. Relativně nový je především sběrač Solidarita v převažné části své délky.

Stoková síť ve starší zástavbě pochází rovněž většinou z období před rokem 1950. Přitom v některých oblastech je silně zastoupena stará kanalizace o stáří cca 100 let. Novější stoková síť s předpoklady delší životnosti se vyskytuje hlavně v sídlištní zástavbě ze 60. - 80. let (Pankrác II, Rybníčky, Skalka, Malešice, Vršovická).

Dílčí povodí Pankrácké štoly

Hlavní sběrače povodí

Pankrácká štola byla vybudována v návaznosti na kmenovou stoku K za účelem odlehčení přetíženým sběračům v dolní části povodí Botiče. Současně umožnila přímé napojení sídlištního komplexu Jižní město na tuto novou páteřní stoku pražské kanalizace.

Vlastní povodí Pankrácké štoly zahrnuje pouze okrsek sídliště Zelená liška v Krči, který byl na ní přepojen v údolí Botiče. Dále sem patří povodí horních úseků sběrače CXIIb (Záběhlice) a CXIIa (Jižní město), původně napojená na pokračování těchto sběračů údolím Botiče.

Před zaústěním Pankrácké štoly do kmenové stoky K je na ní přepojena část sběrače CXXVII mezi Podolským nábřežím a Jezerkou a spolu s ním i část území pravého břehu Vltavy v povodí tohoto úseku sběrače.

Do povodí horního úseku sběrače CXIIa náleží část Michle jižně od Botiče, Spořilov včetně sídlišť, sídlištního komplexu Jižní město I a střední částí sídliště Jižní město II. S výjimkou území Michle, starší zástavby na Spořilově a sídliště Spořilov I je v celém povodí vybudována oddílná kanalizace.

Do povodí úseku sběrače CXXVII, připojeného na Pankráckou štolu, náleží oblast Podolí a části Braníka a Krč v údolí Dvoreckého potoka včetně sídliště Antala Staška, Pankrác I a Zelený pruh s jednotnou kanalizací.

Stáří a stav stok

Rovněž stoky jednotné i oddílné kanalizace jsou v tomto povodí relativně nové. Tzv. stará kanalizace se vyskytuje v Záběhlicích a v menším rozsahu i v Michli. Starší zástavba Michle, Spořilova, Záběhlic, Zahradního města a Hostivaře je vybavena kanalizací, která byla většinou vybudována před rokem 1950.

Dílčí povodí sběrače CXXVIIb (pravobřežní Kunratický)

Hlavní sběrače povodí

Sběrač CXXVII byl původně součástí systému kmenové stoky A. Z pravého břehu Vltavy pokračoval od svého soutoku se sběračem CXXX údolím Kunratického potoka a odvodňoval celé území města v jeho povodí až ke správním hranicím před rokem 1968. Územní rozvoj této části Prahy si vyžádal výstavbu nového sběrače pro rozšířené území v povodí Kunratického potoka - tzv. levobřežního Kunratického sběrače CXXVIIa, napojeného přímo na kmenovou stoku K. Na tuto novou pátéřní stoku byl původní sběrač rovněž přepraven, takže již nemá přímou vazbu na sběrač CXXVII a je považován za samostatný sběrač CXXVIIb.

Povodí sběrače CXXVIIb bylo po vybudování nového sběrače CXXVIIa omezeno na území, nacházející se severně a východně od trasy uvedeného sběrače. Zahrnuje dno údolí Kunratického potoka od jeho ústí do Vltavy po areál Thomayerovy nemocnice a severní svahy dolní části tohoto údolí se zástavbou Krč a Michle po Ryšánku, Zelený pruh a Budějovické nám. Dále sem náleží i povodí Roztylského potoka s nejsevernějším okrskem sídliště Jižní
město II (část Horních Roztyl) a areál Thomayerovy nemocnice v Krči. S výjimkou povodí Roztylského potoka je zde převážně vybudována jednotná kanalizace.

Stáří a stav stok

Sběrač CXXVIIb byl vybudován v 1. polovině století, ale v podstatné části délky byl v minulých desetiletích překládán a rekonstruován. Nedávno byla vybudována též splašková stoka z Horních Roztyl.

Stoková síť z období před rokem 1950 se vyskytuje hlavně v severní části povodí sběrače. Novější je kanalizace sídlišť v oblasti Krče a Horních Roztyl.

Dílčí povodí sběrače CXXVIIa (levobřežní Kunratický)

Hlavní sběrače povodí

Do povodí nového levobřežního Kunratického sběrače CXXVIIa náleží část povodí původního sběrače CXXVII v povodí Kunratického potoka jižně a západně od jeho trasy. Jedná se o části Krče a Lhotky, odvodněné většinou oddílnou soustavou a dále o sídlišti Novodvorská a okres Braník Ve Studeném s kanalizací jednotnou.

Povodí sběrače CXXVIIa dále zahrnuje plochy původně na centrální stokový systém nepřipojené - nová rozvojová území jako Kunratice, východní část Libuše, Šeberov, event. I Písnice. V této části jeho povodí má být realizována výhradně oddílná kanalizace.

Stáří a stav kanalizace

Dílčí povodí sběrače CXXX (Libušský)

Hlavní sběrače povodí

Povodí sběrače CXXX zahrnuje území na pravém břehu Vltavy jižně od údolí Kunratického potoka a spolu s ním i vyšší polohy v povodí potoků Zátišíského, Lhoteckého a Libušského, které leží jižně od centrálního stokového systému. Jedná se o území Hodkoviček vyjma jejích pobřežní části, část Modřan (Tyršova čtvrť), část Lhotky západně od ul. Novodvorská se sídlištěm Lhotka, Kamýk a oblast Libuše s průmyslovým areálem jihovýchodně od obce (Masokombinát, Drůbežářské závody). Dále sem je možné napojit i území Písnice. V
celém povodí sběrače CXXX je vybudována oddílná kanalizace s výjimkou území staré Libuše, kde má být starý systém jednotné kanalizace přebudován na oddílný.

Stáří a stav stok

Starší stoková síť se vyskytuje v Hodkovičkách a na území staré Libuše. V ostatních lokalitách byla soustavná kanalizace vybudována v posledních třech desetiletích.

Dílčí povodí sběrače CXL (Modřanský)

Hlavní sběrače povodí

Povodí sběrače zahrnuje dnes oblast Modřan (bez Tyršovy čtvrti) a dolní části Hodkoviček. Výhledově bude na tento sběrač po jeho prodloužení napojeno též území Komořan a další lokality. Část Komořan je na sběrač již napojena. V celém tomto území se počítá výhradně s oddílnou kanalizací a splaškové vody je nutno do kmenové stoky K přečerpávat.

Stáří a stav stok

Vesměs se jedná o poměrně nedávno vybudované kanalizační sběrače a stokové sítě.

Dílčí povodí sběrače CL (Zbraslav - Radotín)

Hlavní sběrače povodí

Povodí sběrače CL zahrnuje oblast Poberouní na levém břehu Vltavy nad Malou Chuchlí a obou březic Berounky. Dnes jsou zde na centrální stokový systém napojeny Velká Chuchle a Radotín (část s vybudovanou soustavnou kanalizací) a přípravuje se výstavba splaškové
kanalizace v Lahovičkách. Do výhledového povodí tohoto sběrače lze pak dále zahrnout Slivenec, Lochkov, Zbraslav a Lipence. Posledně uvedené lokality na pravém břehu Berounky však rozhodně nebudou v dohledně době na pražský systém připojeny.

Sběrač CL je koncipován jako splaškový sběrač povodí oddílné kanalizace, napojený na kmenovou stoku K prostřednictvím sběrače CXL přes čerpač stanici Modřany. Prozatím byl realizován jeho úsek na levém břehu Vltavy k původně předpokládanému podchodu Berounky u Lahovického mostu, za kterým měl tento sběrač pokračovat po okraji Zbraslavi na území Lipenců. Dokončen je současně i jeho hlavní přítok - sběrač CLX do oblasti Radotína.

Území města ve spojených údolních nivách Vltavy a Berounky se vyznačuje značně nepříznivou konfigurací terénu, neboť zde není pro stavbu splaškových sběračů k dispozici potřebný spád. Splaškové vody je proto nutno mnohonásobně přečerpávat. Původní koncepce, podle níž byl navržen již dokončený úsek sběrače CL, se zakládala na kaskádovém vedení gravitačního sběrače, který se tak před vtokem do čerpačích stanic značně zahyboval. Novější sběrač CXL byl již navržen úsporněji tak, že se na něm střídají podle místních podmínek kratší gravitační úseky a relativně dlouhé výtlaky z ČS.

Stáří a stav stok

Nejstarší stoková síť se v povodí vyskytuje na území sídliště Radotín. Stáří sběračů a ostatních sítí splaškové kanalizace nepřesahuje cca 15 let.

Vlastní povodí kmenové stoky K

Popis trasy kmenové stoky K

Kmenová stoka K začíná východně od křižovatky ul. Modřanské a Pod kopcem, kde je v bývalém lomu umístěna čerpač stanice Modřany na sběrači CXL. Současně se sběračem CXL se do koncového bodu stoky gravitačně napojuje sběrač CXXX z rozdělovací komory v ul. Pod kopcem.

Kmenová stoka K pak vede branickým tunelem směrem k ul. Modřanské a Pod kopcem, kterou sleduje po východní straně směrem ke Kunratickému potoku. Na levém břehu potoka se na ni napojují ve společném spojním objektu sběrač CXXVII a dolní úsek sběrače CXXX. Za podchodem potoka je do spojné a rozdělovací komory napojen sběrač CXVIIb.

Aktualizace PRVKUK hl.m. Prahy
A.2 Popis nadobecních systémů vodovodů a kanalizací v kraji

Aktualizace k roku 2007 - psáno modře
Aktualizace k roku 2010 - psáno červeně
Aktualizace k roku 2016 - psáno zeleně

Na Arbesově nám. je na kmenovou stoku K přepojen horní úsek sběrače I z rozdělovací komory na tomto sběrači. Stoka K pak pokračuje Štěfánikovou ul. v souběhu s tímto sběračem na západní okraj nám. Kinským, kde je na ní vybudován spojový objekt pro budoucí připojení sběrače M. V současně době je do této spojky napojen splaškový odtok z rekonstruovaného oddělovače 102K Holečkova.

Připojená vlastní povodí

V uvedeném výčtu jsou uvedena pouze hydrologicky významnější povodí, která byla přepojena přímo na kmenovou stoku K:
- z rozdělovací komory na sběrači CXXVII na křížovatce Jezera v Braníku se na stoku K napojuje povodí úseku tohoto sběrače mezi touto komorou a dalším rozdělovacím objektem u Kurntického potoka. Současně je připojen i přítok tohoto sběrače z ul. Branické, na kterém je na křížovatce s ul. Mezilesí vybudován dešťový oddělovač 5K Branická. Do povodí tohoto oddělovače náleží území Braník nad ul. Branickou až do Zeleného pruhu a Ryšance. Bez odlehnění je na kmenovou stoku K napojena dolní část Braníka mezi ul. N. Míšky a Branickou, na Podolském nábřeží se pod rozdělovací komorou na kmenovou stoku K připojíme bez odlehnění krátký úsek sběrače CXXVII, odvodňující území mezi ul. D podolského sanatoria a Pankráckou ulici,
- na křížovatce Janačkova nábřeží a Kořenského ul. je napojena bez odlehnění stoka z Janáčkova nábřeží, odvodňující přilehlé území až po Lidickou ul.
- ze Zborovské ul. je na kmenovou stoku K napojen střední úsek sběrače II po rozdělovací komoru v ul. Svornosti (přepojení na sběrač P). Sběrač II odvodňuje v úseku mezi ul. U železničního mostu a Lidickou celé území Smíchova mezi Vltavou a Nádražní ul. Severně od Lidické ul. je na něj napojeno území podél Zborovské. Napojení na stoku K je provedeno přes nově vybudovaný oddělovač s výpustí do Vltavy na Dětském ostrově pod Stítkovským jezem,
- z ul. Preslovy je napojena bez odlehnění stoka, původně zaústěná do sběrače II v ul. Pavla Švandy ze Šemčíc, která odvodňuje území mezi ul. Štěfánikovou a Janáčkovým nábřežím,
Aktualizace PRVKUK hl.m. Prahy

A.2 Popis nadobecných systémů vodovodů a kanalizací v kraji

AKTUALIZACE k roku 2007 - psáno modře
AKTUALIZACE k roku 2010 - psáno červeně
AKTUALIZACE k roku 2016 – psáno zeleně

V připojených povodích je převážně uliční síť vybudovaná před rokem 1950 jako ve většině starší zástavby.

Stáří a stav stok

5.2.2 ÚSTŘEDNÍ ČISTÍRNA ODPADNÍCH VOD

Součástí Lindleyova návrhu kanalizace z roku 1893 bylo též vybudování ústřední čistírny odpadních vod v Praze – Bubenči, ze které však byla v tomto období realizována pouze její mechanická část.

Počátkem 70. let bylo rozhodnuto, že celá Praha bude i nadále napojena na jednu ústřední čistírnu odpadních vod. Pro novou čistírnu byla vybrána lokalita na území obce Hostín v okrese Mělník. Nová ÚČOV se měla realizovat ve třech etapách s využitím stávající Západního ústředního čistírného ústředí.
Intenzifikace byla rozdělena do několika etap:
- etapa Ia (plně realizovaná) zahrnuje řešení biologického stupně,
- etapa Ib (nebyla ani částečně realizovaná) zahrnovala řešení kalové koncovky,
- etapa II obsahovala řešení čištění s vyššími požadavky na odstranění dusíku v souladu s NV 171/92 Sb.

Zároveň s intenzifikací ÚČOV probíhaly další úpravy směřující k zlepšení účinnosti čištění a zlepšení technického stavu jednotlivých technologických souborů ÚČOV.

V souvislosti s nutností rekonstrukce ÚČOV bylo vypracováno několik variant jejího řešení:
- umístění kalového hospodářství mimo areál ÚČOV,
- umístění celé čistírny mimo území Císařského ostrova – varianta podzemní čistírny v lokalitě Čimice,
- rekonstrukce ÚČOV na ostrově včetně nového kalového hospodářství,
- a jejich kombinace.

V současné době probíhá příprava a dostavba Nové vodní linky v sousedství Ústřední čistírny odpadních vod. Zároveň bylo, v důsledku povodní roku 2002, do jednotlivých variant zapracováno řešení proti povodňové ochrany ÚČOV.

Podrobný popis ÚČOV včetně uvedení jejich kapacite je součástí zprávy A.3. Popis vodovodů a kanalizací v městských částech, respektive v územích vztahujících se k povodím jednotlivých čistíren odpadních vod v okrajových městských částech a k povodím ÚČOV.

5.2.3 POBOČNÉ ČISTÍRNY ODPADNÍCH VOD

Jejich podrobný popis včetně kapacit a skutečných přítoků je uveden ve zprávě A.3. Popis vodovodů a kanalizací v městských částech, respektive v územích vztahujících se k povodím jednotlivých čistíren odpadních vod v okrajových městských částech a k povodím ÚČOV.

Jedná se o následující ČOV a jejich umístění:

- ČOV Miškovice
- ČOV Kbely
- ČOV Certouzy (Horní Počernice)

Aktualizace k roku 2007 - psáno modře
Aktualizace k roku 2010 - psáno červeně
Aktualizace k roku 2016 - psáno zeleně

ČOV Svépravice (Horní Počernice)
ČOV Xaverov
ČOV Újezd nad Lesy
ČOV Uhříněves
ČOV Ruzyně – jih
ČOV Ruzyně – sever
ČOV Běchovice – obec přepojeno na PČOV Běchovice VZLÚ
ČOV Běchovice -VZLÚ
ČOV Březiněves
ČOV Dolní Chabry
ČOV Klánovice
ČOV Koloděje
ČOV Komňany - U Skladu
ČOV Komňany -Šabatka
ČOV Kolovraty
ČOV Králíčovice
ČOV Lipence
ČOV Lochkov
ČOV Nebušice – do roku 2019 přepojeno na ÚČOV
ČOV Nedvězí
ČOV Přední Kopanina
ČOV Holýně (Slivenec)
ČOV Sedlec v roce 2006 byla přepojena do povodí ÚČOV
ČOV Újezd u Průhonic
ČOV Vinoř
ČOV Zbraslav
ČOV Sobín

5.2.4 ZHODNOCENÍ SOUČASNÉHO STAVU

5.2.4.1 KANALIZAČNÍ SÍŤ

Stávající kanalizační síť na území hlavního města Prahy můžeme z hlediska historického i situacního vývoje rozdělit na kanalizační síť v povodí ÚČOV a kanalizační síť v povodí pobočných čistíren.

5.2.4.1.1 Kanalizační síť v povodí ÚČOV

Tato kanalizační síť v sobě zahrnuje nejstarší části stokové sítě až po kanalizace budované v nedávné době. Jedná se v převažné míře o kanalizaci jednotnou, která odvádí odpadní i povrchové vody z převažné části města. Skládá se z kmenových stok, kanalizačních sběračů a následně podrobné stokové sítě. Vzhledem k rozšiřování kanalizačního systému do vzdálenějších oblastí je na kanalizační síti vybudováno poměrně množství čerpaních stanic odpadních vod.

Řada stok je v nevyhovujícím technickém stavu a na hranici životnosti. Vzhledem k vzrůstajícímu množství odpadních vod převáděných kmenovými stokami a sběrači,
nepoňačují některé úseky ani kapacitně a neumožňují v současné době připojení nových kanalizačních systémů, zejména v okrajových částech města. Stávající síť neumožňuje převedení a následné čištění požadovaného množství dešťových vod na ÚČOV.

Části území nemají vybudovanou kanalizační síť, zejména v jižní části Prahy (Cholupice, Točná), v současné době je dobudovávají (Slivenec, Řeporyje) k roku 2006 mají dobudovanou kanalizační síť Modřany a Hájek.

Vzhledem k výše uvedenému je nutná dostavba a zejména rekonstrukce sítí podle závěrů Generelu odvodnění hlavního města Prahy.

V některých částech jsou malé lokality odkanalizovány do domovních ČOV např. Písnice.

5.2.4.1.2 Kanalizační síť v povodí pobočných čistíren

Kanalizační síť v povodí jednotlivých pobočných čistíren odpovídaji technickým stavem době svého vzniku i způsobu výstavby (některé byly realizovány v rámci akcí). Jedná se o jednotné i oddílné kanalizace. Vzhledem k tomu, že se jedná o síť v oblastech s velkým nárůstem bytového výstavby, jsou jejich nejnovější části budovány jako oddílná kanalizace. Na této oddílné kanalizaci se s ohledem na odkanalizování vzdálenějších oblastí je na kanalizační síti vybudováno poměrně značné množství čerpacích stanic odpadních vod

Tyto síti jsou často zatěžovány přítokem velkého množství balastních vod, což se negativně projevuje i na efektivitě čištění na pobočných ČOV.

Kanalizační síť v jednotlivých povodích jsou různého rozsahu a ne vždy zahrnují stávající historickou zástavbu. Je nutné jejich doplnění (Dubeč - Uhříněves, Netluky - Uhříněves - Dubeč, Zadní Kopanina – včetně ČOV) a v potřebném rozsahu i rekonstrukce.

Odpadní vody ze severozápadní části městské části Suchdol jsou svedeny na mimopražskou ČOV v Roztokách u Prahy.

5.2.4.2 ÚSTŘEDNÍ ČISTÍRNA ODPADNÍCH VOD

Vzrůstající znečištění přivedené v odpadních vodách na ÚCOV a změna platné legislativy jsou důvody, pro které stávající stav i přes provedenu I. etapu intenzifikace nevyhovuje požadavkům na ÚČOV kladeným a to včetně zajištění čištění dešťových vod. Protipovodňová ochrana stávajícího areálu ÚČOV je zajištěna pro standardních Q₁₀₀. Magistrát hlavní města Prahy požaduje vyšší ochranu na povodeň z roku 2002.

5.2.4.3 POBOČNÉ ČISTÍRNY ODPADNÍCH VOD

Vzhledem ke kapacitním možnostem stávající stokové sítě na území hlavního města Prahy a k ekonomickým možnostem zůstávají pobočné čistírny i do budoucna nedílnou součástí koncepce likvidace odpadních vod.

5.3 PŘEDPOKLADY VÝVOJE ODVEDENÍ A ČIŠTĚNÍ ODPADNÍCH VOD V HL. M. PRAZE DO ROKU 2015

5.3.1 KONCEPCE ODKANALIZOVÁNÍ

Koncepce odkanalizování území hlavního města Prahy vychází důsledně z preference výstavby kanalizačních sítí. Pouze v lokalitách, kde výstavba kanalizačních sítí je technicky nemožná nebo ekonomicky neefektivní, je odkanalizování území navrhováno pomocí bezodtokých jímek vyvážených do stanic přejímky odpadních vod.

V rámci výstavby nových kanalizačních sítí je navrhována pro odvedení odpadních vod přednostně oddílná kanalizace především z ekonomických důvodů, následně i menších potřebných kapacit čistíren odpadních vod.
V okrajových částech města lze navrhovat modifikované kanalizační sítě. V rámci těchto sítí lze do oddílné kanalizace zaústit znečištěné dešťové vody, ale za podmínek posouzení ovlivnění funkce příslušné ČOV. Čisté dešťové vody jsou samostatně likvidovány (např. zasakováním) nebo odváděny přímo do vodoteče.

Nová jednotná kanalizace je připustná v lokalitách pouze v případě dostavby stávajícího systému a lze oddělené dešťové vody zaústit přímo do Vltavy nebo Berounky. U stávající jednotné kanalizace je potřeba při její rekonstrukci zajistit snížení nebo zamezení přítoku balastních vod a čistých dešťových vod.

V případě rekonstrukce stávající jednotné kanalizace v blízkosti vodního toku je vhodné ji přebudovat na kanalizaci oddílnou.

Při rekonstrukci OK na stávající jednotné kanalizaci, je v některých případech vhodné navrhovat retenční nádrže, které umožní postupné natékání dešťových vod na ČOV.

Přednostně se buduje gravitační kanalizace. V místech kde morfologie terénu, nebo jiné technické a legislativní překážky neumožní využití gravitační kanalizace, je navrhována kanalizace tlaková s čerpáním do gravitační kanalizace.

5.3.2 KONCEPCE NAKLÁDÁNÍ S ODPADNÍMI VODAMI

Koncepce nakládání s odpadními vodami na území hlavního města Prahy vychází historicky z centrálního řešení odvedení a likvidace odpadních vod. Již v minulém století byl navrhován kanalizační systém s cílem odvedení maximálního množství odpadních vod na ČOV. Pouze v lokalitách, které díky geomorfologii terénu nebo z ekonomických důvodů, nelze připojit k čistírnám odpadních vod, je navrženo lokální řešení pomocí bezodtokých jímek s jejich vyvážením na stanice přejímaní odpadních vod nebo se likvidují odpadní vody v domovních čistírnách.

Generel odvodnění hlavního města Prahy z roku 2001 přepokládá postupné připojování některých pobočných ČOV na povodí ÚČOV a jejich následné zrušení, případně rekonstrukci na čerpací stanice. Vzhledem ke kapacitním možnostem stávající sítě a ekonomické náročnosti budou některá tato opatření realizována za časovým horizontem předkládaného PRVKUK.

Generel odvodnění navrhuje přepojení následujících pobočných ČOV na povodí ÚČOV:

- **ČOV Komářany** – přepojení je vázáno na dostavbu sběrače A2 do prostoru Modřan a Komářan,
- **ČOV Běchovice VZLÚ** přepojení je vázáno na dostavbu kmenové stoky H (do roku 2009) předpokládá se realizace během roku 2011 stoka H je ve výstavbě
- **ČOV Běchovice obec** – ČOV bude v roce 2011 zrušena a přepojena na stokovou síť obce s čistěním na ČOV Běchovice VZLÚ - dokončeno ČOV přepojena
- **ČOV Sedlec** – povodí přepojeno v listopadu 2006, dokončeno
- **přepojení ČOV Královice do ČOV Uhříněves se předpokládá do roku 2010 – nutná je změna územního plánu, ČOV Královice – přepojení je podmíněno prodloužením sběrače**
- **ČOV Uhříněves** – přepojení je podmíněno prodloužením sběrače G
- **ČOV Nebušice** bude přepojena na ČOV Praha přes Šárecký sběrač do roku 2019
- **ČOV Sobín** přepojení na ÚČOV Praha (podána žádost o změnu ÚP),
- **ČOV Svépravice** přepojení na ÚČOV Praha do roku 2020,
Pokud jsou a zůstanou pobočné čistírny ve funkcí, musí stejně jako ÚČOV splňovat požadavky NV č.61/2003 Sb. v platném znění.

Koncepce řešení nakládání s odpadními vodami bude na nových plochách zajištěna návrhem oddílné kanalizace, rekonstrukcí a intenzifikací stávajících ČOV a vždy v souladu s požadavky vodohospodářských organů a platnou legislativou v době realizace.

V lokalitě Zadní Kopanina je z ekonomických důvodů navržena výstavba pobočné ČOV. V lokalitě pro napojení na ÚČOV by bylo třeba vybudovat dlouhý přivaděč a čerpací stanici.

5.3.3 REKONSTRUKCE A MODERNIZACE KANALIZAČNÍCH SÍTÍ

Zvýšené množství odpadních vod spolu z fyzickým i technickým stářím kanalizačních sítí a objektů na území hlavního města Prahy vedly v Generelu odvodnění hlavního města Prahy k zmapování a návrhu nezbytných opatření, aby stávající systém zaručující odvedení a likvidaci odpadních vod mohl i nadále fungovat.

Tato opatření lze rozdělit na opatření:
- intenzifikace ÚČOV,
- rekonstrukce a intenzifikace na pobočných ČOV,
- rekonstrukce a modernizace kanalizační sítě ve všech povodcích.

5.3.3.1 REKONSTRUKCE ÚČOV

Vzhledem ke stálé snaze najít řešení, které bude z hlediska termínu realizace a výše investičních nákladů pro hl. m. Prahu přijatelné, byla v srpnu 2004 zpracována Studijní situace Rekonstrukce ÚČOV na Císařském ostrově s využitím území i mimo areál současné ÚČOV. Tento záměr byl dopracován do projektu „Celková přestavba a rozšíření Ústřední čistírny odpadních vod Praha na Císařském ostrově“ a žádosti o spolufinancování z prostředků fondu soudržnosti.

V projektu „Celková přestavba a rozšíření Ústřední čistírny odpadních vod Praha na Císařském ostrově“ je navrženo vybudování nové mechanicko–biologické linky čištění odpadních vod s chemickým srážením a úpravou stávající čistírny tak, aby bylo možné splnit emisní limity nařízení vlády 61/2003 Sb. a směrnice Rady EU 91/271/EHS pro citlivé oblasti.

Dále je v projektu zajištěno zvýšení kapacity čistírny o 183560 EO na celkovou kapacitu 1612500 1 612 500 ekvivalentních obyvatel (tj. 8,2 m3/s mechanicko- biologicky vyčištěných odpadních vod) a další mechanicko-chemické čištění odpadních vod v množství 3 m3/s při srážkových průtocích.

Celkové odstranění znečištění:

(plantované)

| BSKs | 96750 kg/den |
| CHSK | 265 000 kg/den |

AKTUALIZACE k roku 2007 - psáno modře
AKTUALIZACE k roku 2010 - psáno červeně
AKTUALIZACE k roku 2016 – psáno zeleně

N = 184550 kg/den
N_{celk} = 21900 kg/den
P_{celk} = 3150 kg/den

V současné době probíhá celková přestavba ÚČOV Praha na Císařském ostrově, která je rozdělena do několika etap.

Etapá 001 – Nová vodní linka (NVL) (2019)
- Nová mechanická – biologická linka čištění odpadních vod s chemickým srážením
- EO týdenní maximum 1.100.000 ; EO roční průměr 806.250
- Max kapacita biologické linky Qd 4,1 m³/s
- Max kapacita mechanického stupně 7,1 m³/s
- Maximální přípustné hodnoty kvality odtoku:

<table>
<thead>
<tr>
<th>Parametr</th>
<th>hodnota „p“</th>
<th>hodnota „m“</th>
<th>roční průměr</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSK</td>
<td>55</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>BSKs</td>
<td>15</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td>NL</td>
<td>20</td>
<td>30</td>
<td>-</td>
</tr>
<tr>
<td>N_{celk}</td>
<td>-</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>P_{celk}</td>
<td>-</td>
<td>3</td>
<td>0,8</td>
</tr>
</tbody>
</table>

Maximální přípustné hodnoty znečištění vyčištěných odpadních vod při souběžném provozu NVL a ÚČOV

Etapá 002 přestavba Staré vodní linky.
- Po uvedení Nové vodní linky do provozu (etapa 001) bude zahájen
Etapá 0003 - Kalové hospodářství
Etapá 0004 - Nátokový labyrint – levý břeh (2021)
Etapá 0005 - Nátokový labyrint – pravý břeh (2019)
Etapá 0008 – Kompensační opatření (2018)
Etapá 0009 Retenční nádrž – pravý břeh (2020)
Etapá 0010 Retenční nádrž – levý břeh (2021)

Žádost pro Fond soudržnosti byla po vnitrostátním projednání a doporučení Meziřezortním řídícím výborem odeslána k posouzení orgánů Evropské komise v Bruselu. Projekt byl též posuzován z hlediska vlivu na životní prostředí – EIA. Dne 27.10.2005 bylo vydáno souhlasné stanovisko Odboru ochrany prostředí MHMP s uvedením konkrétních podmínek, kterými bude podmíněno rozhodnutí nebo opatření nutných k provedení záměru v příslušných správních nebo jiných nařízeních.

Nezbytným předpokladem pro realizaci projektu bylo schválení změny Územního plánu hlavního města Prahy. Zastupitelstvo HMP usnesením č. 22/19 schválilo v listopadu 2004 změnu č. 0652/00, která umožnila zachování provozu ÚČOV na Císařském ostrově i po roce 2010. Realizace projektu má přesahovat území současného areálu ÚČOV byla změna Z1525/00 Územního plánu sídelního útvaru hl. m. Prahy projednána a schválena Usnesením Zastupitelstva hl. m. Prahy č.32/15 dne 24.11.2005.

5.3.3.2 REKONSTRUKCE A INTENZIFIKACE NA POBOČNÝCH ČISTÍRNÁCH

Návrh na rekonstrukci, případně intenzifikaci některých pobočných čistíren vychází z potřeby tyto čistírny dále používat pro likvidace odpadních vod. Navržená opatření zajistí splnění platné legislativy a zkvalitnění a zhospodárnění provozu. K roku 2006 byla navrhovaná opatření částečně realizována.

Na území hl. m. Prahy je každé povodí považováno za jednu aglomeraci v souladu se Směrnicí Rady 91/271 EHS.

Po roce 2006 budou realizována následující opatření:
- Systém řízení technologických procesů ČOV a přenos dat na centrální velín (soubor opatření je před dokončením), dokončeno
- ČOV Kbely – rekonstrukce kalového hospodářství a doplnění zařízení na hygienizaci kalu, dokončeno, nutnost intenzifikace
- ČOV Zbraslav – po roce 2006 zbyvá dokončit kalovou koncovku a hrubé předčištění, dokončeno
- ČOV Miškovice - rekonstrukce začíná výšení kapacity splnění limitů pro citlivé oblasti, modernizace kalového hospodářství a úprava technologie, ve výstavbě a zkušebním provozu
- ČOV Nebušice – intenzifikace z důvodů očekávaného nárůstu odpadních vod a nemožnosti připojení na ÚČOV – investice je před dokončením, dokončeno, v roce 2016 částečně přepojeno na ÚČOV Praha,
- ČOV Koloděje – výšení kapacity kalového hospodářství s cílem zefektivnění provozu, dokončeno
- ČOV Čertousy – rekonstrukce mechanicko-biologického stupně a doplnění zařízení na hygienizaci kalu (kalové hospodářství je zrekonstruováno), dokončeno, v přípravě dokumentace pro územní rozhodnutí o intenzifikaci čistírny, včetně rozšíření kalového hospodářství pro likvidaci kalů z okolních PČOV,
- ČOV Dolní Chabry – obtisk dočišťovací nádrže z důvodu čištění nádrže bez zhoršení jakosti vod z ČOV,
- ČOV Kolovraty – výstavba druhé linky, dokončeno
- ČOV Uhříněves - rekonstrukce zajistí splnění limitů pro citlivé oblasti,
- ČOV Klánovice – intenzifikace a rekonstrukce, dokončeno
AKTUALIZACE k roku 2007 - psáno modře
AKTUALIZACE k roku 2010 - psáno červeně
AKTUALIZACE k roku 2016 – psáno zeleně

- ČOV Uhříněves-Dubeč – dostavba objektů, dokončeno, v přípravě je další intenzifikace včetně rozšíření kalového hospodářství pro likvidaci kalů z okolních PČOV,
- ČOV Vinoř – celková přestavba ČOV jako nadobecní (i pro okolní mimopražské obce Radonice, Předletice, Jenštejn a Podolanka), obec Podolanka buduje vlastní ČOV,
- ČOV Lipence- dostavba kapacity,
- ČOV Nedvěží-rekonstrukce zahájena,
- ČOV Svěrnav-doplnění technologie dokončeno, v přípravě přepojení na ÚČOV Praha
- ČOV Holyně intenzifikace rozšíření o 500 EO,
- ČOV Sobín,
- ČOV Přední Kopanina intenzifikace, a zvýšením kapacity,
- ČOV Březiněves intenzifikace,
- ČOV Královice intenzifikace,
- ČOV Újezd (u Průhonic) intenzifikace

5.3.3.3 REKONSTRUKCE A MODERNIZACE KANALIZAČNÍ SÍTĚ VE VŠECH POVODÍCH

Cílem navrhovaných opatření je zabezpečení bezporuchového provozu kanalizačních sítí, zvýšení jejich kapacity a modernizace vybraných objektů. Současně musí probíhat plošná rekonstrukce sítí podle aktuální potřeby po celé sledované obdobi.

V povodí ÚČOV se jedná zejména o dokončení odkanalizování celého území v souladu se závěry Generelu odvodnění hlavního města Prahy, zkoušení některých úseků kmenových stok a sběračů, což umožní připojení dalších lokalit a následně přepojení některých pobočních ČOV do tohoto povodí. Zrušením nevyhovujících oddělovacích komor, jejich rekonstrukcí a výstavbou nových, společně s výstavbou nových retenčních nádrží na sítí bude zabezpečeno odvádění maximálního množství dešťových vod a jejich čištění na ÚČOV. K tomuto účelu bude využita i kapacita některých kmenových stok. Součástí navržených opatření je i dostavba protipovodňové ochrany kanalizační sítě. Rekonstrukce stávající kanalizační sítě přispěje ke zmenšení přítoku balastních vod a ke zmenšení zatěžování ČOV.

V povodí pobočních čistíren odpadních vod se jedná zejména o rekonstrukce technicky nevhodných úseků kanalizace v souvislosti s napojováním nové kanalizace, modernizací zastaralé sítě a tím zmenšení přítoku balastních vod od odpadních vod mimo ČOV.

5.4 VYMEZENÍ REALIZAČNÍCH PREFERENCÍ

Priority pro výstavbu kanalizací a ČOV byly definovány na podkladě „Metodického pokynu pro zpracování Plánů rozvoje vodovodů a kanalizaci kraje“ [P 4] a na základě jednání s objednateli.
Pro kanalizace a ČOV byly schváleny priority výstavby v tomto znění:
1. výstavba kanalizací a ČOV v pásmech hygienické ochrany vodních zdrojů, výstavba ČOV a kanalizací zahrnutých do mezinárodních programů pro zlepšení čistoty vody v tocích do roku 2006/2010, trvá i po roce 2010
2. nové stavby, případně náhrada staveb, jejichž technický stav ohrožuje provoz systému – trvá i po roce 2010, do roku 2010
3. rekonstrukce kanalizačních systémů, průběžně po celé období dle Generelu odvodnění do roku 2015
4. výstavba nových kanalizací, do roku 2015
5. stavba kanalizačních zařízení vedoucí ke zvýšení technické úrovně současného provozu do roku 2020
6. Celková přestavba a rozšíření ÚČOV trvá i po roce 2010, do roku 2010
Pro ÚČOV byla vyčleněna vzhledem k významu a rozsahu stavby samostatná kategorie. Svým charakterem odpovídá kategorii 1.

Zařazení jednotlivých staveb kanalizací do časového období je uvedeno pro kanalizace v tabulkách XII a XIV. Samostatně pro kanalizace jsou v příloze uvedeny grafy č. 8 a 9 vyjadřující potřebný roční objem investičních prostředků.

32 Databáze, tabulková část a grafická část není součástí aktualizace 2010.
6 PŘEHLED PROVOZOVATELŮ A VLASTNÍKŮ

6.1 PROVOZOVATELÉ

Mimo Pražských vodovodů a kanalizací a.s., které jsou dominantním provozovatelem vodovodů a kanalizací na území hl. m. Prahy, zajišťuje provoz vodovodů v městské části Lipence, Přední Kopanina a v městské části Praha 6 - Ružyně, pro plochu Nového letiště - areál sever, 1.Vodohospodářská společnost s r.o.

Provoz čistíren odpadních vod kromě Pražských vodovodů a kanalizací a.s. zajišťují následující firmy:
- ČOV Komořany - M 2 K s r.o., CZ Namar s r.o. LOGISTIČČ ČZ – služby, s r.o.
- ČOV Komořany – ČHMÚ s p.
- ČOV Xaverov - Xaverov a s., neznáme, BIG BOX Horní Počernice, s r.o.
- ČOV Ružyně sever a jih - ČSL s p., Letiště Praha a s.
- ČOV Běchovice - Framaka s r.o.,
- ČOV Klánovice BMTO v o s. , PVK, a s.(Pražské vodovody a kanalizace, a.s.)
- ČOV Nedvězí - BMTO v o s., PVK, a s
- ČOV Lipence a ČOV Přední Kopanina - I.Vodohospodářská společnost s r.o.,
- ČOV Zbraslav – Vodohospodářská společnost Benešov s r.o. PVK, a s

6.2 VLASTNÍCI

Vodohospodářská infrastruktura je převážně ve vlastnictví hl. m. Prahy, mimo vodojemu Rohožník. Na území Prahy mohou být části vodovodních a kanalizačních řadů, vybudované soukromými osobami, které nejsou dosud předané Magistrátu hl. m. Prahy.

Pouze v úpravnách vody mají akciové podíly i další vlastníci.

Úpravna vody Želivka:
- Hlavní město Praha má v držení 90 % akcií
- Středočeský kraj má v držení 6,9 % akcií
- Kraj Vysočina má v držení 1 % akcií

Úpravna vody Káraný:
- Hlavní město Praha má v držení 97,2 % akcií
- Středočeský kraj má v držení 2,8 % akcií

Vodojem Rohožník zásobuje pitnou vodou obec Úvaly a leží na území hl. m. Prahy
A.2 Popis nadobecních systémů vodovodů a kanalizace v kraji

AKTUALIZACE k roku 2007 - psáno modře
AKTUALIZACE k roku 2010 - psáno červeně
AKTUALIZACE k roku 2016 – psáno zeleně
7 INVESTIČNÍ NÁKLADY

Pro zpracování investičních nákladů pro výstavbu nových objektů, vodovodních a kanalizačních řad byly použity jednotkové cenové ukazatele uvedené pro trubní rozvody a jednotlivé objekty v „Metodickém pokynu pro orientační ukazatele výpočtu pořizovací (aktualizované) ceny objektů do Vybraných údajů majetkové evidence vodovodů a kanalizací a pro Plány rozvoje vodovodů a kanalizací a pro Plány financování obnovy vodovodů a kanalizací č.j.: 8114/2007-16000 401/2010-15000, který vydalo mimo jiné Ministerstvo zemědělství České republiky k zajištění jednotného zpracování ekonomické části Plánů rozvoje vodovodů a kanalizací s výpočtem nákladů na realizaci těchto plánů včetně jejich změn a aktualizací podle § 5 zákona č.274/2001 Sb., o vodovodech a kanalizacích pro veřejnou potřebu a o změně některých zákonů, ve znění pozdějších předpisů a § 2, 3 a 4 vyhlášky Ministerstva zemědělství č.428/2001 Sb, kterou se provádí zákon, ve znění pozdějších předpisů.

Pro výpočet cen v Praze byly stanoveny polohové koeficienty pro výpočet ceny takto:
1,8 – pro centrální část Prahy v hranicích z roku 1922,
1,2 – pro ostatní části Prahy.

Hranice pásem jsou znázorněny na obr.č. 2.

Pro stavby zahrnuté do plánu investiční výstavby Pražské vodohospodářské společnosti a.s. byly použity reálné náklady, pokud již byly stanoveny, ze zpracovaných projektů. Na základě výše uvedených podkladů byly vypočteny pro navržený program výstavby a reconstrukce vodárenské a kanalizační infrastruktury potřebné investiční náklady. „Plán rozvoje“ obsahuje návrh rozvoje vodovodů a kanalizací v Praze, který vychází z cílů stanovených v úvodu prací, z postupu výstavby a respektuje reálné požadavky vyplývající z Územního plánu hl. m. Prahy. V tabulce č.1 a č.2 ve zprávě A.1. uvádíme objem potřebných investičních nákladů.

Podrobně informace o investičních nákladech pro jednotlivé městské části jsou uvedeny v tabulkách XIII a XIV a podrobně po jednotlivých objektech jsou uvedeny v tabulkách XI a XII.

Do investičních nákladů jsou v plném rozsahu zahrnuty i náklady na rekonstrukce a modernizace v úpravně vody Želivka a Káraný, i když jsou tyto úpravny vody z části v majetku obcí na území Středočeského kraje a kraje Vysočina. Vzhledem k tomu, že majetkový podíl hl. m. Prahy na úpravě vody Želivka činí 90 % a na úpravě vody Káraný 97,2 %, bylo rozhodnuto zahrnout celé investiční náklady do „Plánu rozvoje vodovodů a kanalizací hl. m. Prahy“ mimo ÚV Želivky.

Investiční akce plynoucí z očekávané zvýšené potřeby vody, v hl. m. Praze a v části Středočeského kraje zásobeného přes distribuční systém Prahy, jsou uvedeny ve zprávě A1.
Aktualizace PRVKUK hl.m. Prahy

A.2 Popis nadobecních systémů vodovodů a kanalizace v kraji

AKTUALIZACE k roku 2007 - psáno modře
AKTUALIZACE k roku 2010 - psáno červeně
AKTUALIZACE k roku 2016 – psáno zeleně

Hranice cenových pásem
(rozsah Prahy v roce 1922)
obr.č. 2